PhysProf - Strömung - Volumenstrom - Viskosität - Druck

PhysProf - Physik-Software - Ideale Strömung

Fachthema: Ideale Strömung - Strömungslehre

PhysProf - Mechanik - Ein Programm mit Formeln zur Physik wie auch zur Visualisierung physikalischer Sachverhalte aus der Naturwissenschaft mittels Simulationen und 2D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure und alle die sich für Physik interessieren.

PhysProf - Physikprogramm mit Animationen - Ideale Strömung

Online-Hilfe für das Modul
zur Analyse und grafischen Simulation der Zusammenhänge, welche bei idealen Strömungen in Flüssigkeiten vorherrschen - Fachthema Strömungslehre.

Dieses Unterprogramm ermöglicht die Durchführung der Steuerung entsprechender Abläufe zur Echtzeit und bietet die Möglichkeit, die Einflüsse relevanter Größen interaktiv zu untersuchen. Es unterstützt dabei ein tiefergehendes Verständnis zu diesem Themengebiet zu erlangen und kann zum Lösen vieler diesbezüglich relevanter Aufgaben eingesetzt werden.

PhysProf - Programm zur Visualisierung physikalischer Sachverhalte 

Weitere relevante Seiten zu diesem Programm

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu PhysProf 1.1.
 
Zu den Videos zu PhysProf 1.1
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms PhysProf 1.1 herunterladen.

Zum Download der Demoversion von PhysProf 1.1
 

Themen und Stichworte zu diesem Modul:
Strömungsmechanik - Strömung - Strömungslehre - Volumenstrom - Fließgeschwindigkeit - Gleichförmige Strömung - Mittlere Fließgeschwindigkeit - Visualisierung - Simulation - Querschnitt - Volumen - Druck - Drücke - Dichte - Rohr - Rohrleitung - Dynamischer Auftrieb - Fluiddynamik - Strömungsmechanik - Strömung im Rohr - Laminar - Laminare Strömung - Laminarströmung - Stationäre Strömung - Rohrströmung - Kritische Geschwindigkeit - Dynamische Zähigkeit - Massenstrom - Turbulenz - Strömungsquerschnitt - Durchflussgeschwindigkeit - Durchflussrate - Durchflussmenge - Stationäre Strömung - Instationäre Strömung - Dynamische Strömung - Statischer Druck - Dynamischer Druck - Bernoulli-Gleichung - Bernoullische Gleichung - Bernoullisches Gesetz - Kontinuitätsgleichung - Kontinuität - Kontinuitätsgesetz - Strömungsarten - Strömungsberechnung - Strömungsdruck - Strömungsformen - Strömungssimulation - Gesetz von Bernoulli - Bernoulli - Gesetz - Formeln - Strömungsgeschwindigkeit - Strömung berechnen - Strömungen - Volumenstrom berechnen - Wasserströmung - Massenstrom - Schweredruck - Hydrostatischer Druck - Staudruck - Gesamtdruck - Druckverlust - Geodätischer Druck - Torricelli - Absoluter Druck - Relativer Druck - Dynamische Auftriebskraft - Dynamischer Auftrieb - Druckunterschied - Druckdifferenz - Druckänderung - Flüssigkeitssäule - Durchfluss - Zylinder - Geschwindigkeit - Ausfließgeschwindigkeit - Gefäß - Ventouri-Effekt - Gesetzmäßigkeiten der Physik - Berechnungsprogramm - Berechnungsformel - Venturi-Rohr - Pilotrohr - Staurohr - Prandtisches Staurohr - Differenzdruck - Differenzdruckmessung - Prandtlsonde - Prandtlsches Staurohr - Flußgeschwindigkeit - Flüssigkeitsspiegel - Flüssigkeit - Druck in Säule - Fließgeschwindigkeit berechnen - Fließgeschwindigkeit in Rohrleitungen - Volumenänderung - Ausflussgeschwindigkeit - Ausflussbeiwert - Ausflussbeiwerte - Ausflusszahl - Bestimmen - Viskosität - Dynamische Viskosität - Kinematische Viskosität - Kinematische Viskosität - Zähigkeit - Zähflüssigkeit - Reynoldszahl - Reynolds Zahl - Reynoldssche Zahl - Strömungswiderstandskraft - Strömungswiderstand - Kritische Geschwindigkeit - Widerstandsbeiwert - Viskose Reibung - Arten - Abhängigkeit - Bedeutung - Einheiten - Kinematisch - Dynamisch - Maßeinheit - Verändern - Veränderung - Ändern - Änderung - Rechner - Berechnen - Beispiel - Formel - Formelzeichen - Vorgang - Vorgänge - Erklärung - Beschreibung - Einfluss - Einflussfaktoren - Physik - Physikalisch - Gleichung - Bild - Berechnung - Darstellen - Grafik - Grafische Darstellung - Präsentation - Einheit - Physikalische Einheit - Wasser - Flüssigkeit - Fließgeschwindigkeit in Rohren

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in PhysProf 1.1 implementierten Module bzw. zur Bestellseite für das Programm.
 
 Zum Inhaltsverzeichnis von PhysProf 1.1 PhysProf 1.1 bestellen
  

Ideale Strömung


PhysProf - Ideale Strömung - Volumenstrom - Volumen - Querschnitt - Geschwindigkeit - Statischer Druck - Dynamischer Druck - Strömungsmechanik - Strömung - Volumenstrom - Fließgeschwindigkeit - Mittlere Fließgeschwindigkeit - Visualisierung - Simulation - Querschnitt - Volumen - Druck - Drücke - Dichte - Rohr - Rohrleitung - Strömung im Rohr - Laminar - Laminare Strömung - Flüssigkeitssäule - Durchfluss - Zylinder - Geschwindigkeit - Ventouri-Effekt - Berechnen - Gesetzmäßigkeiten der Physik - Berechnungsprogramm - Flußgeschwindigkeit - Flüssigkeitsspiegel - Druck in Säule - Rechner - Darstellen - Plotten - Graph - Berechnen - Grafik - Plotter
Modul Ideale Strömung


 

Das Unterprogramm [Mechanik I] - [Ideale Strömung] ermöglicht es, sich die Zusammenhänge, die bei einer idealen Strömung von Flüssigkeiten vorherrschen, am Beispiel des Venturi-Effekts zu verdeutlichen.
 

PhysProf - Ideale Strömung - Volumenstrom - Volumen - Querschnitt - Geschwindigkeit - Statischer Druck - Dynamischer Druck - Strömungsmechanik - Strömung - Volumenstrom - Fließgeschwindigkeit - Mittlere Fließgeschwindigkeit - Visualisierung - Simulation - Querschnitt - Volumen - Druck - Drücke - Dichte - Rohr - Rohrleitung - Strömung im Rohr - Laminar - Laminare Strömung - Flüssigkeitssäule - Durchfluss - Zylinder - Geschwindigkeit - Ventouri-Effekt - Berechnen - Gesetzmäßigkeiten der Physik - Berechnungsprogramm - Flußgeschwindigkeit - Flüssigkeitsspiegel - Druck in Säule - Darstellen - Plotten - Graph - Rechner - Grafik - Plotter
Ideale Strömung - Abbildung 1
 

PhysProf - Stömungsquerschnitt - Stationäre Strömung - Dynamische Strömung - Statischer Druck - Dynamischer Druck - Bernoulli-Gleichung - Kontinuitätsgleichung - Strömungslehre - Strömungsgeschwindigkeit - Strömung berechnen - Volumenstrom berechnen - Schweredruck - Hydrostatischer Druck - Darstellen - Plotten - Graph - Rechner - Berechnen - Grafik - Plotter - Fließgeschwindigkeit in Rohren - Volumenänderung - Verändern - Veränderung - Ändern - Änderung
Ideale Strömung - Abbildung 2
 

Als Strömungsmechanik (Fluidmechanik oder Strömungslehre) wird die Lehre des physikalischen Verhaltens von Fluiden bezeichnet. Strömungen sind Bewegungen von Flüssigkeiten oder Gasen. Ursache von Strömungen sind z.B. Schwerkraft und Druckdifferenzen. Von idealer Strömung spricht man, wenn von Wirbelbildungen und innerer Reibung abgesehen wird. Eine stationäre Strömung liegt vor, wenn der Druck, die Geschwindigkeit sowie die Eigenschaften des Fluids konstant sind und an jeder Stelle des Strömungsfelds zeitlich unabhängig sind. Trifft eines dieser Merkmale nicht zu, so wird von einer instationären Strömung gesprochen.
 

Grundlagen

 
Als Strömungsgeschwindigkeit (Fließgeschwindigkeit) wird die Geschwindigkeit einzelner Teilchen in einer strömenden Flüssigkeit bezeichnet.

Beim Durchfluss V durch Röhren gelten u.a. nachfolgend aufgeführte Gesetzmäßigkeiten:
 

Strömung - Gleichung 1
 

V: Volumen der durch den Querschnitt A strömenden Flüssigkeit [m³]
A: Rohrquerschnitt [m²]
v: Strömungsgeschwindigkeit der Flüssigkeit [m/s]
t: Dauer der Strömung [s]


Der Volumenstrom (auch als Durchflussrate oder Durchflussmenge bezeichnet) Q ist wie folgt definiert:
 

Strömung - Gleichung 2
 

Q: Volumenstrom [m³/s]
A: Rohrquerschnitt [m²]

V: Volumen der durch den Querschnitt A strömenden Flüssigkeit [m³]

t: Dauer der Strömung [s]

 

Die Größe m/t wird als Massenstrom bezeichnet. Für sie gilt:

Massenstrom - Gleichung - 1

In differentieller Schreibweise:

Massenstrom - Gleichung - 2
 
ṁ: Massenstrom [kg/s]
A: Rohrquerschnitt [m²]
v: Strömungsgeschwindigkeit der Flüssigkeit [m/s]
ρ: Dichte der Flüssigkeit [kg/m³]



Durchflussgesetz:

PhysProf - Strömung - Durchfluss - Strömungslehre - Durchflussgesetz

Das Durchflussgesetz (Kontinuitätsgesetz) lautet:
 

Strömung - Gleichung 3

Es gilt: A ~ 1/v
 

A1: Querschnitt an Stelle 1 [m²]

A2: Querschnitt an Stelle 2 [m²]

v1: Geschwindigkeit an Stelle 1 [m/s]

v2: Geschwindigkeit an Stelle 2 [m/s]

 

Durch jeden Querschnitt eines Rohres tritt in der gleichen Zeit das gleiche Volumen, da Flüssigkeiten beinahe inkompressibel sind. Dies ist aus der o.a. Gleichung zu entnehmen. Ebenso kann hieraus gefolgert werden, dass die Fließgeschwindigkeit bei kleineren Querschnitten höher ist als bei großen.
 

Drücke - Statischer Druck - Dynamischer Druck

 
In jeder Strömung setzt sich der Gesamtdruck aus zwei Teildrücken zusammen. Es sind dies:

  • der statische Druck:
    folgt aus der potentiellen Energie der unter Druck stehenden Flüssigkeit
     

  • der dynamische Druck:
    folgt aus der kinetischen Energie der strömenden Flüssigkeit

 
Gemäß dem Gesetz von Bernoulli gilt: In einer stationären Strömung ist die Summe aus statischem und dynamischen Druck konstant. Diese entspricht dem hydrostatischen Druck der ruhenden Flüssigkeit.


PhysProf - Strömung - Druck - Stastischer  Druck - Dynamischer Druck - Strömungslehre - Strömungsformen

Mit wachsender Strömungsgeschwindigkeit wächst der dynamische Druck und es sinkt der statische Druck.


PhysProf - Strömung - Druck - Stastischer  Druck - Dynamischer Druck - Diagramm - Strömungslehre - Strömungsformen

Verläuft eine Strömung in gleicher Höhe, so gilt:

Strömung - Gleichung 4
 

Aus dieser Gesetzmäßigkeit (Bernoulli-Gleichung) lässt sich die Differenz zweier statischer Drücke ermitteln:
 

Strömung - Gleichung 5
 

und mit Hilfe der Kontinuitätsgleichung:
 

Strömung - Gleichung 6
 

lässt sich die Strömungsgeschwindigkeit v1 bestimmen, wenn die Strömungsgeschwindigkeit v2 bekannt ist:
 

Strömung - Gleichung 7
 

Zudem gilt, dass jede Flüssigkeit infolge ihrer Gewichtskraft einen Schweredruck (geodätischer Druck) besitzt. Dieser kann wie folgt berechnet werden:
 

Strömung - Gleichung 8
 

Hieraus lässt sich die Höhe der Strömung th ermitteln. Da an jeder Stelle des Rohres gilt
 

th = vh + ph
 

können unter Zuhilfenahme des o.a. Zusammenhangs alle statischen und dynamischen Drücke an jeder Stelle des Rohres ermittelt werden.

 

A1: Querschnitt an Stelle 1 [m²]

A2: Querschnitt an Stelle 2 [m²]

p1: Statischer Druck an Stelle 1 [Pa]

p2: Statischer Druck an Stelle 2 [Pa]

v1: Strömungsgeschwindigkeit an Stelle 1 [m/s]

v2: Strömungsgeschwindigkeit an Stelle 2 [m/s]

 

th: Gesamthöhe der Strömung [m]

vh: Höhe der Strömung durch dynamischen Druck [m]

ph: Höhe der Strömung durch statischen Druck [m]

Δp: Druckdifferenz p2 - p1 [Pa]

 

p: Schweredruck in der Tiefe h [Pa]

ρ: Dichte der Flüssigkeit [kg/m³]

h: Höhe der drückenden Flüssigkeitssäule [m]
 

Dieses Prinzip wird insbesondere zur Ermittlung der Strömungsgeschwindigkeit in Flüssigkeiten verwendet. Es wird hierdurch ermöglicht, an zwei verschieden Stellen eines Rohres mit unterschiedlichen Querschnitten, die Differenz der statischen Drücke zu messen und somit die Strömungsgeschwindigkeit bestimmbar zu machen.
 

Programmbedienung

 
Zusammenhänge dieser Art können Sie sich verdeutlichen, wenn Sie die zur Verfügung stehenden Rollbalken bedienen.

Zugrundegelegt wird, dass die Dichte der strömenden Flüssigkeit ρ = 1 g/cm³ beträgt. Der Durchmesser d1 des dargestellten Rohres (linksseitig) ist mit d = 2 cm vorgegeben. Den Durchmesser d2 des Rohres (rechtsseitig) können Sie durch eine Positionierung des Rollbalkens d2 verändern. Mittels der Bedienung der Rollbalken p1 und v1 verändern Sie den im linksseitig abgebildeten Rohrstück vorherrschenden Druck p1 sowie die dortige Fließgeschwindigkeit v1.

Neben der Anzeige der in den entsprechenden Rohrabschnitten vorherrschenden Drücke p1 und p2 gibt das Programm Auskunft über die Strömungsgeschwindigkeiten v1 und v2. Zudem werden die Werte der durch den dynamischen Druck der Strömung verursachten Höhen vh1 und vh2 sowie die durch statischen Druck vorhandenen Höhen ph1 und ph2 ausgegeben. Auch wird der Wert für die Gesamthöhe th der Strömung angezeigt. Der Wert für Δp gibt Auskunft über die zwischen den beiden Rohrteilen vorherrschende Druckdifferenz.
 

Bernoullische Gleichung

 
Die Bernoulli-Gleichung besagt, dass die spezifische Gesamtenergie von Teilchen auf dem Weg durch eine Strömungsröhre konstant bleibt. Hierbei verändern sich zwar die Anteile aus kinetischer, potentieller und Druckenergie, die Summe derer bleibt jedoch konstant.

Die Summe aus Staudruck, Schweredruck und statischem Druck wird als Gesamtdruck bezeichnet.


PhysProf - Gesetz - Bernoulii - Gleichung - Statischer Druck - Dynamischer Druck
 

Die Bernoulli-Gleichung lautet:

Bernoulli - Gleichung - Gesetz - Formel - 1
Bernoulli - Gleichung - Gesetz - Formel - 2

 
Wenn die Strömung in (annähernd) gleicher Höhe verläuft, so gilt:

Bernoulli - Gleichung - Gesetz - Formel - 3
Bernoulli - Gleichung - Gesetz - Formel - 4

 
A1: Querschnitt an Stelle 1 [m²]

A2: Querschnitt an Stelle 2 [m²]

p1: Statischer Druck an Stelle 1 [Pa]

p2: Statischer Druck an Stelle 2 [Pa]

v1: Strömungsgeschwindigkeit an Stelle 1 [m/s]

v2: Strömungsgeschwindigkeit an Stelle 2 [m/s]

h1: Höhe der Strömung an Stelle 1 [m]

h2: Höhe der Strömung an Stelle 2 [m]
ρ: Dichte der Flüssigkeit [kg/m³]

 

Druckmessung


Bei jeder Art einer Strömung treten zwei verschiedene Arten von Drücken auf. Es sind dies der statische Druck sowie der dynamische Druck (Staudruck). Der dynamische Druck resultiert aus der Bewegungsenergie (Ekin) des strömenden Mediums. Der statische Druck beruht auf der Lageenergie (Epot) des unter Druck stehenden Mediums (Gas oder Flüssigkeit). Die Summe dieser beiden Drücke wird als Gesamtdruck p0 bezeichnet.

PhysProf - Druckmessung - Statischer Druck - Messen - Drücke - Strömungslehre - Druck - Statisch
Abb.1 - Statischer Druck


PhysProf - Druckmessung - Dynamischer Druck - Staudruck - Differenzdruck - Prandtlsches Staurohr - Strömung - Strömungslehre -  Strömungsgeschwindkeit
Abb.2 - Staudruck

PhysProf - Druckmessung - Druck - Strömung - Strömungslehre - Gesamtdruck - Strömungsgeschwindkeit - Messen
Abb.3 - Gesamtdruck

Die Messung dieser Drücke erfolgt durch unterschiedliche Verfahren. Der statische Druck wird durch ein zur Strömungsrichtung rechtwinklig positioniertes Manometer gemessen. Der Gesamtdruck wird mit einem Pilot-Rohr erfasst. Durch das in Strömungsrichtung angebrachte Rohr wird sowohl der statische wie auch der dynamische Druck erfasst. Da das durch das Rohr strömende Medium bei dessen Eintritt gebremst wird, wandelt sich der dynamische Druck in einen Staudruck, welcher gemessen werden kann.

PhysProf - Venturi- Rohr - Venturirohr - Druckdifferenz - Druck - Differenz

Die Differenz zweier statischer Drücke kann auch mit Hilfe des Venturi-Rohrs erfasst werden. Dieses ermöglicht insbesondere die Bestimmung der Strömungsgeschwindigkeit eines Mediums. Hierbei wird an zwei Stellen unterschiedlichen Querschnitts der dort jeweils vorhandene statische Druck erfasst. Aus der Differenz dieser beiden Drücke ist die Strömungsgeschwindigkeit bestimmbar.

Hierbei gilt für die Strömungsgeschwindkeit an Stelle 1:


Differenzdruck - Formel - Druckunterschied - 1

Der Volumenstrom der dort vorhandenen Strömung kann wie folgt ermittelt werden:

Differenzdruck - Formel - Druckunterschied - 2
A1: Querschnitt an Stelle 1 [m²]
A2: Querschnitt an Stelle 2 [m²]
v1: Geschwindigkeit an Stelle 1 [m/s]
Q: Volumenstrom [m³/s]
ρ: Dichte des Mediums [kg/m³]
p1: Druck an Stelle 1 [Pa]
p2: Druck an Stelle 2 [Pa]
Δp: Druckdifferenz p2 - p1 [Pa]
 

Insbesondere zur Bestimmung der Strömungsgeschwindigkeit in Gasen wird das Prandtlsches Staurohr (Prandtlsonde) eingesetzt. Für diesen Fall gilt:


Strömung - Geschwindigkeit - Formel
v: Geschwindigkeit des strömenden Mediums [m/s]
p0: Gesamtdruck [Pa]
p: Statischer Druck [Pa]
ρ: Dichte des Mediums [kg/m³]
 

Dynamische Viskosität - Kinematische Viskosität - Zähigkeit

 
1. Dynamische Viskosität:


PhysProf - Viskosität - Zähigkeit - Zähflüssigkeit

Mit der dynamischen Viskosität wird die Zähigkeit (Zähflüssigkeit) einer Flüssigkeit (eines Fluids) beschrieben. Je höher ihr Wert ist, desto zähflüssiger ist sie. Ein Fluid besitzt eine innere Reibung die zu überwinden ist, wenn sie auf einer ebenen Fläche bewegt werden soll. Sie ist dem Betrag nach identisch mit der Reibungskraft. Bei Flüssigkeiten nimmt die dynamische Viskosität mit zunehmender Temperatur stark ab, bei Gasen hingegen nimmt sie zu.

Es gilt:

η = FR·d(A·v)

η: Dynamische Viskosität [Ns/m²]
FR: Reibungskraft [N]
A: Berührfläche [m²]
v: Relative Geschwindigkeit zwischen zwei Berührflächen [m/s]
d: Abstand der beiden Berührflächen [m]

 
Wird die oberste Schicht mit der Geschwindigkeit v bewegt, so bewegt sich die direkt unterhalb dieser befindende Schicht auf Grund der Haftung ebenfalls mit dieser Geschwindigkeit v. Es gilt:

Δη = FR·Δd(A·v)
 
Δη: Dynamische Viskosität [Ns/m²]
v: Relative Geschwindigkeit zwischen zwei Berührflächen [m/s]
FR: Reibungskraft [N]
A: Berührfläche [m²]
Δd: Abstand der beiden Berührflächen [m]


Als viskose Reibung wird diejenige Reibung bezeichnet, die bei der Bewegung eines Körpers in einem Fluid (Flüssigkeit oder Gas) auftritt. Für den Fall, dass es sich beim Körper um eine Kugel handelt, gilt für sie:

FV = 6·π·r·v·η

FV: Viskose Reibungskraft [N]
η: Dynamische Viskosität der Flüssigkeit [Ns/m²]
r: Radius der Kugel [m]
v: Geschwindigkeit der Kugel [m/s]

 

2. Kinematische Viskosität:

PhysProf - Kinematische Viskosität - Viskosität - Zähigkeit - Zähflüssigkeit

Als kinematische Viskosität wird das Verhältnis der dynamischen Viskosität und der Dichte eines Mediums bezeichnet. Es gilt:
 
ν = Δ/ρ
 
ν: Kinematische Viskosität [m²/s]
η: Dynamische Viskosität [Ns/m²]
ρ: Dichte [kg/m³]
 

Ausflussgeschwindigkeit

 
Als Ausflussgeschwindigkeit wird die Geschwindigkeit bezeichnet, mit welcher ein flüssiges Medium von geringer Viskosität aus der Öffnung eines dieses beinhaltenden Gefäßes strömt. Sie hängt von der Höhe h der drückenden Flüssigkeitssäule ab.

 

PhysProf - Ausfließgeschwindigkeit - Ausfluss - Geschwindigkeit - Gefäß
Für sie gilt:

PhysProf - Ausfließgeschwindigkeit - Ausfluss - Geschwindigkeit - Gefäß - Formel
Diese Gleichung wurde nach dem italienischen Physiker und Mathematiker Evangelista Torricelli benannt.

v: Ausfließgeschwindigkeit [m/s]
h: Abstand der Ausflussöffnung vom Flüssigkeitsspiegel [m]
g: Fallbeschleunigung 9,81 m/s²

Der Ausflussbeiwert (Ausflusszahl) berücksichtigt die Verringerung der Ausflussgeschwindigkeit aufgrund der Viskosität der ausströmenden Flüssigkeit. Er hängt unter anderem davon ab, ob es sich um eine laminare oder turbulente Strömung handelt.

Wird dieser berücksichtigt, so gilt für die Ausflussgeschwindigkeit:


Ausflussgeschwindigkeit - Formel
μ: Ausflussbeiwert

 
Nachfolgend aufgeführt sind die Zahlenwerte der Ausflussbeiwerte einiger Öffnungen.
 

PhysProf - Ausflussbeiwert - Ausflusszahl - Ausfließgeschwindigkeit

Laminarströmung - Stationäre Strömung - Rohrströmung - Turbulente Strömung

 
Unter einer laminaren Strömung (Laminarströmung ) wird die Bewegung von Flüssigkeiten und Gasen verstanden, bei welcher keine erkennbaren Turbulenzen (Verwirbelungen) auftreten. Einzele Schichten des sich in einem Rohr bewegenden Mediums besitzen unterschiedliche Geschwindkeiten. Bei Strömungen dieser Art handelt es sich meist um stationäre Strömungen. Von einer stationären Strömung wird gesprochen, wenn sich die vektorielle Strömungsgeschwindigkeit an den unterschiedlichen Orten im Rohr zeitlich nicht verändert.

Steigt die Geschwindigkeit der Bewegung eines Fluids, so tritt ab einer bestimmten Geschwindigkeit eine Veränderung im Strömungsprofil auf, welches sich durch Verwirbelungen bemerkbar macht. Als kritische Geschwindigkeit wird die Geschwindigkeit bezeichnet, oberhalb derer bei einer strömenden Flüssigkeit oder einem strömenden Gas die laminare (geordnete) Strömung in eine turbulente Strömung (wirbelnde Strömung) übergeht. Der bei einer turbulenten Strömung auftretende Druckverlust eines durch ein Rohr strömenden Fluids ist größer als derjenige, welcher bei einer laminaren Strömung auftritt.

 

Turbulente Strömung - Reynoldssche Zahl - Strömungswiderstand

 
Reynoldssche Zahl:

Zur Berechnung des Strömungswiderstands bzw. der Strömungsleistung bei einer turbulenten Strömung wird ein Widerstandsbeiwert verwendet, der abhängig von der Form des umströmten Gebildes ist sowie dem Medium aus welchem dieses besteht. Dieser ist eine Funktion der Reynoldsschen Zahl.

Diese Zahl wird unter anderem dazu verwendet, um die Art der vorliegenden Strömung zu bestimmen. Besitzt diese dimensionslose Kenngröße einen kleinen Wert, so liegt eine laminare Strömung vor, andernfalls handelt es sich um eine turbulente Strömung.

Bei der Erhöhung einer Strömungsgeschwindigkeit wird u. U. die kritische Geschwindigkeit vkrit erreicht, bei welcher sich die laminare Strömung in eine turbulente Strömung umwandelt. Der Wert der zur Bemessung der Art der Strömung (laminar oder turbulent) dient, wird als kritische Reynoldszahl RKrit bezeichnet: Bei Re > Rkrit. kann davon ausgegangen werden, dass eine turbulente Strömung vorliegt.

Besitzen zwei ähnliche Gebilde ähnliche Reynoldssche Zahlen, so verfügen sie auch über ähliche Widerstandsbeiwerte und deren Strömungen sind einander ähnlich.

Die Reynoldssche Zahl ist wie folgt definiert:


Reynoldssche Zahl - Formel
Re: Reynoldssche Zahl
d: Charakteristische Länge des Körpers (z.B. Radius des Rohres, der Kugel) [m]
η: Dynamische Viskosität [Ns/m²]
ν: Kinematische Viskosität [m²/s]
ρ: Dichte des strömenden Fluids [kg/m³]
v: Fließgeschwindigkeit zwischen Fluid und Körper [m/s]

Strömungswiderstand:

Der Strömungswiderstand (die Strömungswiderstandskraft FW) eines Körpers hängt von der Strömungsgeschwindigkeit zwischen Körper und Medium v, der Dichte ρ, der Viskosität η des Mediums (Fluids) sowie der Form des durchflossenen Körpers ab. Es gilt:


Strömungswiderstand - Strömungswiderstandskraft - Formel
c: Widerstandsbeiwert
A: Widerstandsfläche [m²]
FW: Strömungswiderstand (Strömungswiderstandskraft) [N]
ρ: Dichte des strömenden Fluids [kg/m³]
v: Fließgeschwindigkeit zwischen Fluid und Körper [m/s]

 
Dynamischer Auftrieb:

Als dynamischer Auftrieb wird der Anteil der auf einen umströmten Körper wirkenden Kraft bezeichnet, der vertikal zur Anströmrichtung steht. Er wird durch Bewegung erzeugt und bildet sich beim Umströmen von Körpern, wenn die ihn umgebende, verdrängte und bewegte Luft nach unten beschleunigt wird.
 

Dynamische Viskosität - Flüssigkeiten - Tabelle

 
Nachfolgend sind die Werte der dynamischen Viskosität einiger Flüssigkeiten aufgeführt. Wenn nicht anders angegeben, so beziehen sich diese Angaben auf eine Temperatur von 20° C.

 

 Flüssigkeit Dynamische Viskosität η in [mPa·s]
 Aceton 0,322
 Ameisensäure 1,78
 Anilin 4,4
 Asphalt ≈ 1011 ... 1016
 Benzol (25 °C) 0,601
 Bitumen ≈ 107 ... 1014
 Blut (37 °C) 3 ... 25
 Chloroform 0,56
 Decan 0,92
 Dioxan 1,26
 Dodecan 1,52
 Diethylether 0,33
 Essigsäure (80%ig, 25 °C) 2,31
 Ethanol 1,19
 Ethylenglycol 20,82
 Glas (flüssig) ≈ 1022 ... 1024
 Glycerin (rein) 1480
 Heptan 0,41
 Hexan 0,32
 Honig ≈ 10000
 Kaffeesahne ≈ 10
 Lack ≈ 100
 Motoröl (25 °C) ≈ 100
 Motoröl (150 °C) ≈ 3
 Nonan 0,711
 Octan 0,538
 Olivenöl ≈ 100
 Paraffinöl ≈ 102 ... 106
 Pentan (25 °C) 0,224
 Petroleum 0,65
 Quecksilber 1,55
 Rizinusöl 990
 Sirup ≈ 104 ... 105
 Steinsalz ≈ 1018 ... 1021
 Toluol 0,585
 Traubensaft 2 ... 5
 Wasser (5 °C) 1,52
 Wasser (20 °C) 1,00
 Wasser (25 °C) 0,891

 

Dynamische Viskosität - Gase - Tabelle

 
In der folgenden Tabelle sind die Werte der dynamischen Viskosität einiger Gase aufgeführt. Diese Angaben beziehen sich auf eine Temperatur von 0° C bei 101,3 KPa.
 

 Gas Dynamische Viskosität η in [μPa·s]
 Acetylen 9,5
 Ammoniak 9,2
 Argon 21,0
 Chlor 12,3
 Chlormethan 10,5
 Deuterium 12,3
 Ethan 8,6
 Ethylamin  7,7
 Ethylen 9,4
 Fluor 21,9
 Formaldehyd 11,4
 Helium 18,6
 Kohlendioxid 13,8
 Kohlenmonoxid 16,6
 Luft 18,2
 Methan 10,2
 Neon 29,7
 Propan 7,5
 Propen 8,3
 Sauerstoff 19,2
 Schwefeldioxid 12,3
 Stickstoff 16,6
 Wasserstoff 8,4
 Xenon 21,1

    

Kinematische Viskosität - Flüssigkeiten - Tabelle

 
Im Folgenden sind die Werte der kinematischen Viskosität einiger Flüssigkeiten aufgeführt. Diese Angaben beziehen sich auf eine Temperatur von 20° C.
 

 Flüssigkeit Kinematische Viskosität ν in [mm²/s]
 Aceton 0,407
 Anilin 4,31
 Benzol 0,735
 Chloroform 0,38
 Essigsäure (80%ig) 1,16
 Ethanol 1,51
 Glycerin (rein) 1170
 Heptan 0,595
 Olivenöl 89
 Pentan 0,37
 Quecksilber 0,116
 Rizinulsöl 1040
 Toluol 0,677
 Wasser 1,004

    

Kinematische Viskosität - Gase - Tabelle

 
Im Folgenden sind die Werte der kinematischen Viskosität einiger Gase aufgeführt. Diese Angaben beziehen sich auf eine Temperatur von 0° C bei 101,3 KPa.
 

 Gas Kinematische Viskosität ν in [mm²/s]
 Acetylen  8,1
 Ammoniak 12,1
 Argon 11,8
 Chlor 3,82
 Ethan 6,35
 Ethylen 7,47
 Helium 106
 Kohlendioxid 6,93
 Kohlenmonoxid 13,3
 Luft 13,3
 Methan 14,2
 Neon 23,2
 Propan 3,7
 Sauerstoff 13,4
 Stickstoff 13,2
 Wasserstoff 93,8
 Xenon 3,57

    

Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Kurzbeschreibungen von Modulen zum Themengebiet Mechanik Kurzbeschreibungen von Modulen zum Themengebiet Elektrotechnik Kurzbeschreibungen von Modulen zum Themengebiet Optik - Kurzinfos zum Themengebiet Thermodynamik sowie unter Kurzbeschreibungen von Modulen zu sonstigen Themengebieten.

 

Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Hydrostatischer Druck sowie unter Wikipedia - Volumenstrom zu finden.
 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Schräger Wurf - Schiefer Wurf, Waagerechter Wurf - Horizontaler Wurf, Hookesches Gesetz, Mechanische Arbeit, Zweites Newtonsches Gesetz, Drittes Newtonsches Gesetz, Gedämpfte mechanische Schwingung, Bewegungen auf einer Kreisbahn, Hebelgesetz, Chaotisches Doppelpendel, Mathematisches Pendel, Freier Fall und Luftwiderstand, Harmonische Schwingungen, Molekularbewegungen, Brownsche Bewegungen, Potentielle und kinetische Energie, Ideale Strömung - Volumenstrom, Druck in Flüssigkeiten, Wellen - Simulationen, Zusammengesetzte Bewegung, Bewegungen in der Ebene, Carnotscher Kreisprozess, Adiabatische Zustandsänderung, Isotherme Zustandsänderung, Isobare Zustandsänderung, Isochore Zustandsänderung, Beugung am Spalt, Hohlspiegel, Sammellinse, Zerstreuungslinse, Wechselstromkreise, RLC-Kreis - RLC-Schaltung, RL-Kreis  - RL-Schaltung, RC-Kreis - RC-Schaltung, Resonanz - Resonanzkurve, Widerstände im Wechselstromkreis, Schwingungen und deren Überlagerung, Plattenkondensator, Ladung und Entladung von Kondensatoren, Reihenschaltung und Parallelschaltung, Lissajou-Figuren, 1. Keplersches Gesetz, 2. Keplersches Gesetz, 3. Keplersches Gesetz

 
Weitere implementierte Module zum Themenbereich Mechanik


4-Takt-Ottomotor - Impulssatz - Gleichförmige und gleichförmig beschleunigte Bewegung - Bewegung und Geschwindigkeit - Geschwindigkeit und Beschleunigung - Wellen - Druck in Flüssigkeiten - Kinetische und potentielle Energie - Brownsche Bewegung - Molekularbewegung - Harmonische Schwingungen - Kreisbahnbewegung - Auftrieb - Geneigte Ebene - Freier Fall - Waagerechter und schiefer Wurf - Pendel - Chaos-Doppelpendel - Gedämpfte mechanische Schwingung - Rolle und Flaschenzug - Balkenwaage - Hebelgesetz - Zweites Newtonsches Gesetz - Drittes Newtonsches Gesetz - Mechanische Arbeit - Hookesches Gesetz
 

Screenshot dieses Moduls
 

PhysProf - Strömung - Volumenstrom - Fließgeschwindigkeit - Wasser - Flüssigkeit - Rohr - Gleichung - Bild - Berechnung - Querschnitt - Volumen - Druck - Drücke - Dichte - Statischer Druck - Dynamischer Druck - Bernoulli-Gleichung - Kontinuitätsgleichung - Kontinuität - Kontinuitätsgesetz - Druckverlust - Absoluter Druck - Relativer Druck - Dynamische Auftriebskraft - Dynamischer Auftrieb - Druckunterschied - Druckdifferenz - Flüssigkeitssäule - Durchfluss - Geschwindigkeit - Rechner - Berechnen
Unterprogramm Ideale Strömung
 

Screenshot eines weiteren Moduls von PhysProf
 

PhysProf - RLC-Schaltung - RLC Reihenschaltung - RLC-Glied - Dämpfung - Reihenschwingkreis - Schwingkreis - Gedämpfter Schwingkreis - Serienschwingkreis - Elektromagnetische Schwingungen - Widerstand - Kondensator - Kapazität - Induktivität - Spule - Ladung - Frequenz - Kennlinie - Spannung - Stromstärke - Zeitkonstante - Periode - Kreisfrequenz - Berechnen - Zeit - Rechner - Simulation - Berechnung - Darstellen - Diagramm - Formel - Rechner
PhysProf 1.1 - Unterprogramm RLC-Kreis
 

Screenshot eines Moduls von MathProf


MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven in Parameterform
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

  
Unsere Produkte
 
I - PhysProf 1.1
Physik interaktiv
 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

PhysProf 1.1 - Strömung - Volumenstrom - Fließgeschwindigkeit - Volumen - Druck - Physik - Federpendel - Diagramm -  Dämpfung - Schwingung - Aperiodische Schwingung - Sammellinse - Linse - Brennweite - Strahlengang - Kondensator - Ladung - Entladung - Kurve - Periodensystem - Elemente - Energie - Kinetische Energie - Potentielle Energie - Isotherme Zusatandsänderung - RLC - Kreis - Pendel - Parallelschaltung - Reihenschaltung - Darstellung - Darstellen - Plotten - Graph - Rechner - Berechnen - Grafik - Zeichnen - Plotter
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm,welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche. 
 
Zu den Videos zu PhysProf 1.1
 
 
 
   
 
II - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.
 
Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.


Eine Übersicht aller in MathProf 5.0 zur Verfügung stehender Programmteile finden Sie im MathProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zum Inhaltsverzeichnis von MathProf 5.0
 
Kurzinfos zu Inhalten einiger in MathProf 5.0 eingebundnener Unterprogramme erhalten Sie unter:
 

 Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
 Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm,, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
 
 
 
III - SimPlot 1.0

Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.
 
Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0