MathProf - Winkel am Dreieck

Science for all - Maths for you

 

MathProf 5.0 - Mathematik interaktiv

 

Winkel am Dreieck

 

Das Programmmodul [Trigonometrie] - [Dreieckswinkel] - Winkel am Dreieck ist implementiert, um sich die Zusammenhänge bzgl. Winkelverhältnissen am Dreieck verdeutlichen zu können.

 

MathProf - Winkel - Dreieck

 

In diesem Unterprogramm besteht die Möglichkeit, Winkelverhältnisse am Dreieck zu untersuchen.

Grundsätzlich gilt es folgende Zusammenhänge zu beachten:

  • Die Summe aller Neben- und Wechselwinkel am Dreieck muss 180° betragen.
  • Die Summe der Innenwinkel eines Dreiecks muss 180° betragen.
  • Stufenwinkel und entgegengesetzte Winkel am Dreieck müssen gleich groß sein.

Darstellung


MathProf - Innenwinkel - Dreieck

Grafisch darstellen lassen können Sie sich die Winkelverhältnisse am Dreieck, wenn Sie Folgendes ausführen:

  1. Geben Sie die Werte für exakt zwei Winkel in dafür zur Verfügung stehende Felder ein. Bedienen Sie ggf. zuvor die Schaltfläche Löschen.
     
  2. Klicken Sie hierauf auf die Schaltfläche Darstellen. Sind mit den Eingabewerten Berechnungen durchführbar, so wird die grafische Darstellung ausgegeben. Nachdem diese beendet wird, werden die ermittelten Ergebnisse zudem in den Eingabefeldern des Hauptfensters des Unterprogramms angezeigt.

Bei Ausgabe der grafischen Darstellung stellt das Programm die Zusammenhänge dar, welche durch Eingabewerte ermittelt wurden. Es wird jedoch zusätzlich die Möglichkeit geboten, die Lage des Punktes C mit der Maus zu verändern und somit weitere Untersuchungen durchzuführen. Klicken Sie in diesem Fall mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich dieses Punktes und bewegen Sie den Mauscursor bei gedrückt gehaltener Maustaste. Wird diese Option benutzt, so werden Eingabewerte und ermittelte Winkelwerte, welche nach Beendigung der Ausgabe der grafischen Darstellung vorgabemäßig in den Eingabefeldern dieses Unterprogramms ausgegeben werden, hierauf jedoch gelöscht.

Hinweis:

Um sich detaillierte Informationen bzgl. der Eigenschaften des Dreiecks ABC ausgeben zu lassen, wählen Sie den Menüpunkt Datei - Dreieckseigenschaften. Hierauf erscheint ein Ausgabefenster mit den relevanten Daten. Um diese im *.txt-Format zu speichern, verwenden Sie den dort vorhandenden Menüeintrag Datei - Ergebnisse speichern.

 

Bedienformular

 

MathProf - Dreiecksinnenwinkel
 

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • Punkte beschriften: Beschriftung des Mausfangpunktes und der Eckpunkte des Dreiecks ein-/ausschalten
  • Koordinaten: Anzeige der Koordinaten des Mausfangpunktes und der Eckpunkte des Dreiecks ein-/ausschalten
  • Dreieck füllen: Farbfüllung der Dreiecksfläche ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Innenwinkel des Dreiecks

Winkel am Kreis

Winkel an Parallelen
 

Module zum Themenbereich Trigonometrie


Rechtwinkliges Dreieck - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck aus Seitenlängen und Winkeln - Allgemeines Dreieck durch 3 Punkte - Allgemeines Dreieck - Interaktiv - Satz des Pythagoras - Verallgemeinerung des Satz des Pythagoras - Satz des Thales - Höhensatz - Kathetensatz - Winkel am Dreieck - Innenwinkel des Dreiecks - Winkel am Kreis - Winkel an Parallelen - Sinus und Cosinus am Einheitskreis - Tangens und Cotangens am Einheitskreis - Tangentendreieck - Höhenfußpunktdreieck - Lamoen-Kreis - Taylor-Kreis - Euler-Gerade - Simson-Gerade - Satz von Ceva - Isodynamische Punkte des Dreiecks - Isogonal konjugierte Punkte - Spieker-Punkt - Apollonius-Punkt


Zur Inhaltsseite