MathProf - Inversion einer Geraden am Kreis - Umkehrung - Inversion

MathProf - Mathematik-Software - Inversion am Kreis | Gerade | Punkt | Transformation

Fachthema: Inversion einer Gerade an einem Kreis

MathProf - Geometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Inversion am Kreis | Gerade | Punkt | Transformation

Online-Hilfe
für das Modul zur Durchführung der Inversion einer Geraden an einem Kreis. Hierbei erfolgt die interaktive Bildung der Inverse von einer Gerade an einem Kreis.

Das Berechnen der Werte erforderlicher Größen in diesem Unterprogramm erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
   

Themen und Stichworte zu diesem Modul:

Inversion am Kreis - Inversion - Kreis - Gerade - Gerade invertieren - Umkehrung - Inversionszentrum - Kreisspiegelung - Rechner - Berechnen - Graph - Plotten - Darstellen

 

Inversion einer Geraden am Kreis

 

Unter dem Menüpunkt [Geometrie] - [Inversion] - Inversion einer Geraden am Kreis kann die Inversion einer Geraden an einem Kreis vollzogen werden.

 

MathProf - Inversion - Gerade - Kreis - Inverse - Radius - Inversionskreis - Ursprungskreis - Radius - Mittelpunkt - Konstruktion - Eigenschaften - Kreisspiegelung

 

Gegeben seien ein Kreis I mit dem Mittelpunkt O (dem Zentrum der Inversion) und dem Radius r sowie ein Punkt P, welcher von O verschieden ist. Dann ist der zu P inverse Punkt P' derjenige auf dem Strahl OP, der von O die Entfernung OP' = r²/OP besitzt. Punkt P' wird als inverser Punkt der Punkts P bezüglich I bezeichnet. Aus dieser Definition folgt, dass, falls P' der inverse Punkt zu P ist, auch P invers zu P' ist. Punkte die unverändert bleiben, sind die Punkte des Kreises I selbst.

 

Dieses Modul wendet das Verfahren nicht lediglich auf einen Punkt P, sondern auf die Menge aller Punkte die auf einer Geradenliegen, an.

 

Allgemein gilt:
 

Eine Inversion am Kreis I überführt

- eine Gerade, die durch O verläuft, in eine Gerade die durch O verläuft

- eine Gerade, die nicht durch O verläuft, in einen Kreis durch O

- einen Kreis durch O in eine Gerade, die nicht durch O verläuft

- einen Kreis, der nicht durch O verläuft, in einen Kreis der nicht durch O verläuft

 

Die hierbei vonstatten gehende Koordinatentransformation kann beschrieben werden durch:

 

x' = x0 + r² (x - x0) / ((x - x0)² + (y - y0)²)

y' = y0 + r² (y - y0) / ((x - x0)² + (y - y0)²)

 

mit:

x',y': Transformierte Koordinaten des Punkts P'

x,y: Koordinaten des zu transformierenden Punkts P

x0,y0: Kreismittelpunkt des Inversionskreises I

r: Radius des Inversionskreises I

 

In diesem Unterprogramm können Sie diese Sachverhalte, anhand der Durchführung einer Inversion einer Geraden durch die Punkte A und B an einem Kreis K1 analysieren, dessen Mittelpunkt frei wählbar ist und dessen Radius eingestellt werden kann. Der entstandene Kreis trägt die Bezeichnung K2.

 

Hinweis:

Das Programm führt darüber hinaus eine Inversion mit den zwei zur Definition der Geraden erforderlichen Punkten A und B durch. Die hierdurch entstandenen Punkte A' und B' liegen (verständlicherweise) stets auf der Peripherie des durch Inversion entstandenen Kreises.
 

Darstellung

Führen Sie Folgendes aus, um Zusammenhänge bei einer Inversion dieser Art zu analysieren:

  1. Legen Sie durch die Bedienung des Schiebereglers Radius auf dem Bedienformular den Radius des Ursprungskreises fest.
     
  2. Möchten Sie den Mittelpunkt des Ursprungskreises, oder Geradenpunkte, exakt positionieren, so bedienen Sie die Schaltfläche Punkte auf dem Bedienformular und geben die hierfür relevanten Koordinatenwerte im daraufhin erscheinenden Formular ein. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  3. Sollen die Positionen von Anfasspunkten mit der Maus verändert werden, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste.
     
  4. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. die Werte für Schrittweite, Verzögerung bzw. die Anzahl zu verwendender Winkelschritte einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

Möchten Sie die Inversion zudem nur für zwei ausgewählte Geradenpunkte (Anfasser A und B) durchführen lassen und deren Position auf der Peripherie des Kreises K2 lokalisieren, der nach Durchführung der Inversion entstanden ist, so aktivieren Sie hierfür das Kontrollkästchen Punkte darstellen. Die durch Inversion entstandenen Punkte tragen die Bezeichnungen A' und B'.

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Bedienformular

 

MathProf - Inversion - Mittelpunkt - Inverse - Radius - Inversionskreis - Ursprungskreis - Radius - Mittelpunkt
 

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • P beschriften: Punktbeschriftung ein-/ausschalten
  • Koordinaten: Anzeige der Koordinatenwerte dargestellter Punkte ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Inversion eines Kreises am Kreis

 

Beispiel


Legen Sie den Radius des Ursprungskreises mit r1 = 3 fest und positionieren Sie den Mittelpunkt dessen bei M1 (-4 / 4). Definieren Sie hierauf zwei Punkte A (-12 / 8) und B (4 / -2), durch welche die zu invertierende Gerade verlaufen soll, so ermittelt das Programm folgende Ergebnisse:

Der durch Inversion an der Geraden entstandene Kreis K2 besitzt die Eigenschaften:

 

Mittelpunkt: M2 (-6,813 / -0,5)

Radius: r2 = 5,307

 

Für die durch Inversion der Punkte A und B entstandenen Punkte A' und B' ermittelt das Programm die Koordinatenwerte:

 

A' (-4,9 / 4,45)

B' (-3,28 / 3,46)
 

Weitere Screenshots zu diesem Modul

 

MathProf - Inversion - Kreis - Inverse - Gerade - Matrix - Eigenschaften - Inversion Kreis Gerade - Konstruktion - Inversion am Kreis - Beispiel - Konstruktion - Eigenschaften - Kreisspiegelung
MathProf - Inversion - Kreis - Inverse - Gerade - Matrix - Eigenschaften - Inversion Kreis Gerade - Konstruktion - Inversion am Kreis - Beispiel - Konstruktion - Eigenschaften - Kreisspiegelung
MathProf - Inversion - Kreis - Inverse - Gerade - Matrix - Eigenschaften - Inversion Kreis Gerade - Konstruktion - Inversion am Kreis - Beispiel - Konstruktion - Eigenschaften
   

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
  
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Inversion zu finden.

 
Implementierte Module zum Themenbereich Geometrie


Achsenabschnittsform einer Geraden - Punkt-Richtungs-Form einer Geraden - Zwei-Punkte-Form einer Geraden - Hessesche Normalenform einer Geraden - Allgemeine Form einer Geraden - Gerade - Gerade - Gerade - Gerade - Interaktiv - Gerade - Punkt - Gerade - Punkt - Interaktiv - Geradensteigung - Kreis - Punkt - Kreis - Punkt - Interaktiv - Kreis - Gerade - Kreis - Gerade - Interaktiv - Kreis - Kreis - Kreis - Kreis - Interaktiv - Kreisausschnitt - Kreissegment - Kreisring - Ellipse - Regelmäßiges Vieleck - Viereck - Allgemeines Viereck – Interaktiv - Satz des Ptolemäus - Satz des Arbelos - Pappus-Kreise - Archimedische Kreise - Hippokrates Möndchen - Varignon-Parallelogramm - Rechteck-Scherung - Soddy-Kreise - Polygone - Bewegungen in der Ebene - Affine Abbildung - Analyse affiner Abbildungen - Inversion einer Geraden am Kreis - Inversion eines Kreises am Kreis - Spirolateralkurven - Spiralen im Vieleck - Granvillesche Kurven - Bérard-Kurven - Eikurven - Kegelschnitt - Prinzip - Pyramidenschnitt - Prinzip - Kegelschnitte in Mittelpunktlage - Kegelschnitte in Mittelpunktlage - Interaktiv - Kegelschnitte in achsparalleler Lage - Kegelschnitte in achsparalleler Lage - Interaktiv - Kegelschnitte in Mittelpunktlage - Punkt - Kegelschnitte in Mittelpunktlage - Gerade - Allgemeine Kegelschnitte - Kegelschnitte durch 5 Punkte - Interaktive Geometrie mit Objekten - Winkelmaße - Strahlensatz - Teilungsverhältnis - Konstruktion einer Mittelsenkrechten - Konvexe Hülle - Dreieck - Pyramide - Quader im Raum (3D) - Krummflächig begrenzte Körper (3D) - Ebenflächig und krummflächig begrenzte Körper (3D) - Platonische Körper (3D) - Archimedische Körper (3D) - Spezielle Polyeder (3D) - Selfbuild - Punkte (3D) - Selfbuild - Strecken (3D)
 

Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
MathProf 5.0
Mathematik interaktiv

 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 
 
 
  
PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 
Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 
 

 
SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0
 
Videos zu einigen mit diesem Programm erzeugten Animationen finden Sie unter Videos, oder einen Klick auf die nachfolgend dargestellte Schaltfläche ausführen.
 
Zu den Videos zu SimPlot 1.0

Zur Inhaltsseite