MathProf - Venn-Diagramm

Science for all - Maths for you

 

MathProf 5.0 - Mathematik interaktiv

 

Venn-Diagramm

 

Das Unterprogramm [Algebra] - [Mengen] - Venn-Diagramm ermöglicht die Durchführung von Mengenoperationen, sowie eine grafische Veranschaulichung von Mengenbeziehungen anhand eines Venn-Diagramms.

 

MathProf - Venn - Diagramm

 

Dieses Modul stellt die drei Mengen A, B und C einer Gesamtmenge zur Verfügung, mit welchen folgende Operationen durchgeführt werden können:
 

  • Bildung des Durchschnitts von Mengen

  • Bildung der Vereinigung von Mengen

  • Bildung der Differenz von Mengen

  • Bildung der symmetrischen Differenz von Mengen

  • Bildung der Komplementmenge bzgl. der Grundgesamtheit

Zusammenhänge

 

Durchschnittsmenge:
Die Durchschnittsmenge (Schnittmenge) umfasst alle Elemente,
die sowohl in Menge A, wie auch in Menge B enthalten sind.

AB = {x | x A und x B}

 

MathProf - Durchschnittsmenge

Vereinigungsmenge:
Die Vereinigungsmenge ist diejenige Menge, deren Elemente entweder in Menge A, oder in Menge B, oder in beiden Mengen enthalten sind.
A
B = {x | x A oder x B}

 

MathProf - Vereinigungsmenge

Differenzmenge:
Die Differenzmenge umfasst alle Elemente, die zu einer
Menge A gehören, jedoch nicht zu einer Menge B.

A \ B = {x | x A und x B}

MathProf - Differenzmenge

 

Symmetrische Differenz:

Menge aller Elemente, die entweder in Menge A oder in Menge B, aber nicht in beiden Mengen enthalten sind.

A Δ B = (A \ B) (B \ A)

 

MathProf - Symmetrische Differenz

Komplementmenge:

Die Komplementmenge (Komplementärmenge) zu A umfasst alle Elemente, die nicht zu einer Menge A gehören.

¬A = {x | x A}

 

MathProf - Komplementmenge

 

 

Gesetzmäßigkeiten

 

Identitätsgesetz:

 

A A = A

A A = A

 

Die Mengenoperationen Durchschnitt und Vereinigung sind kommutativ, assoziativ und zueinander distributiv. Für sie gilt:

 

 (A B) C = A (B C)

 (A B) C = A (B C)

 

A B = B A

A B = B A

A ∩ (B C) = (A B) (A C)

 

C (A B) = C A C B

C (A B) = C A C B

 

Für die Differenzmengenbildung gilt:

 

(A \ B) \ C  = A \ (B C)

A \ (B \ C)  = (A \ B) (A C)

(A B) \ C = (A \ C) (B \ C)

(A B) \ C = (A \ C) (B \ C)

A \ (B C)  = (A \ B) (A \ C)

A \ (B C)  = (A \ B) (A \ C)

 

Für die symmetrische Differenz gilt:

 

(A Δ B) Δ C = A Δ (B Δ C)

A Δ B = B Δ A

(A Δ B) C = (A C) Δ (B C)

A Δ ∅ = A

A Δ A = ∅

 

Bedienung

 

Aufgrund der eingeschränkten Möglichkeiten bzgl. Tastatureingaben müssen zur Definition von Mengenoperationen folgende Zeichen verwendet werden:

 

 Mengenoperation

Übliches Operatorzeichen

Zu verwendendes Tastaturzeichen

 Durchschnitt von Mengen +
 Symmetrische Differenz von Mengen Δ #
 Vereinigung von Mengen %
 Differenz von Mengen \ \
 Komplementmenge ¬  ~

 

Für Mengenangaben müssen stets die Zeichen A, B und C verwendet werden.

 

Geben Sie die entsprechende Zeichenfolge in die Felder mit den Bezeichnungen Operation ein und bedienen Sie die Schaltfläche Darstellen. Hierauf wird das Venn-Diagramm angezeigt.

 

Wünschen Sie keine farbliche Unterscheidung der einzelnen Mengen, so aktivieren Sie das entsprechende Kontrollkästchen mit der Bezeichnung Einfarbig. Sämtliche Operationen können mit einer, zwei, oder drei Mengen durchgeführt werden.

 

Hinweise:

Bleibt ein Eingabefeld leer, so wird die entsprechende Mengendarstellung ignoriert. Bei der Definition der Mengenoperation dürfen keine Leerzeichen verwendet werden. Der eingegebene Term wird unter Verwendung der üblichen Operationszeichen im entsprechenden Diagramm ausgegeben.

 

Weitere Themenbereiche

 

Mengenelemente

 

Beispiel

 

Es gilt, mit drei Mengen A, B und C folgende Mengenoperationen durchführen zu lassen und die Ergebnisse zu vergleichen:

 

Operation 1: AΔ(B\C)(AC)

Operation 2: (¬AΔB)\(¬C\A)

 

Vorgehensweise:

 

Nach der Festlegung der Zeichenfolge A#(B\C)+(A%C) im linksseitig angeordneten Eingabefeld für Mengendarstellung 1 und der Eingabe der Zeichenfolge (~A#B)\(~C\A) in das rechtsseitig angeordnete Feld für Mengendarstellung 2, stellt das Programm die Resultate nach einer Bedienung der Schaltfläche Darstellen, wie nachfolgend gezeigt, dar.

 

MathProf - Venn-Diagramm - Mengen
 

Module zum Themenbereich Algebra


Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL - Gleichungssystem (Differentialgleichungen) - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte


Zur Inhaltsseite