MathProf - Geometrische Verteilung - Formel - Verteilung - Statistik

MathProf - Mathematik-Software - Geometrische Verteilung | Dichte | Diagramm | Tabelle

Fachthema: Geometrische Verteilung

MathProf - Stochastik - Statistik - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren. Zur effektiven Benutzung derer wird ein bereits erlangtes Grundwissen zum entsprechenden Themengebiet vorausgesetzt.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Geometrische Verteilung | Dichte | Diagramm | Tabelle

Online-Hilfe
für das Modul zur Durchführung der Berechung und Analyse von Zusammenhängen mit geometrisch verteilten Zufallsgrößen.

Dieses Teilprogramm ermöglicht die Praktizierung der
Wahrscheinlichkeitsrechnung dieser Art bei einer Ermittlung der Werte derer Dichtefunktion und derer Verteilungsfunktion. Die Ausgabe dieser erfolgt in einer Wahrscheinlichkeitstabelle.

Zudem
erlaubt es die grafische Darstellung der entsprechenden Wahrscheinlichkeitsfunktion (Dichte) sowie der Wahrscheinlichkeitsverteilung (Verteilung) dieser Verteilungsart in einem Histogramm in Abhängigkeit relevanter Parameter.

Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind implementiert.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Tabelle und Diagramm für Dichte und Verteilung - Histogramm - Wahrscheinlichkeit - Erwartungswert berechnen - Eintrttswahrscheinlichkeit - Wahrscheinlichkeitsdichte - Wahrscheinlichkeitsverteilung - Wahrscheinlichkeitsmodelle - Wahrscheinlichkeitsfunktion - Diskrete Verteilung - Kumulierte Wahrscheinlichkeiten - Geometrisch verteilte Zufallsgröße - Geometrisch verteilte Zufallsvariable - Geometrische Wahrscheinlichkeit - Auswertung - Auswerten - Tabelle - Parameter - Funktion - Rechner - Werte - Darstellung - Berechnung - Darstellen - Verteilungsfunktion - Dichtefunktion

 
Durch die Ausführung eines Klicks auf die entsprechende nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
  

Geometrische Verteilung

 

Unter dem Menüpunkt [Stochastik] - Geometrische Verteilung lassen sich Berechnungen mit geometrisch verteilten Größen durchführen. Ermittelte Werte werden in Tabellen (Wahrscheinlichkeitstabellen) ausgegeben und Zusammenhänge zu diesem Fachthema können grafisch veranschaulicht werden.

 

MathProf - Geometrische Verteilung - Wahrscheinlichkeitsrechnung - Tabelle - Zufallsvariable - Erwartungswert - Zufallsgröße - Wahrscheinlichkeitsfunktion - Wahrscheinlichkeitsverteilung - Wahrscheinlichkeitstabelle - Verteilungsfunktion - Dichtefunktion - Dichte - Verteilung - Wahrscheinlichkeit - Erwartungswert


Geometrische Verteilungen liegen dann als Wahrscheinlichkeitsmodell zugrunde, wenn es um diskrete Zufallsvorgänge geht, welche solange wiederholt werden, bis das erste Mal das interessierende Ereignis eintritt. Hierbei wird vorausgesetzt, dass die Wahrscheinlichkeit, bei der nächsten Durchführung des Experiments erfolgreich zu sein, unabhängig von vorher getätigten Versuchen ist. Die Geometrische Verteilung ist eine einparametrige, diskrete Verteilung. Zufallsvorgänge dieser Art werden auch unter Bezeichnungen wie "Verteilung des Wartens auf den ersten Erfolg" vorgestellt. Dies kann genutzt werden, um den Erwartungswert der Anzahl notwendiger Versuche zu berechnen.
 

Konkret bedeutet dies, dass beispielsweise die Lebensdauer einer Glühbirne dadurch überprüft wird, nach welchem Zeitintervall diese nicht mehr funktioniert. Dieses Zeitintervall ist dann die Zufallsvariable k, die die Zeit beinhaltet, bei welcher das Ereignis "defekt" (erstmalig) aufgetreten ist. Der Erwartungswert einer geometrischen Verteilung beträgt E(x) = 1/p.
 

Wahrscheinlichkeitsfunktion:

 

Variante 1: Wahrscheinlichkeit genau n Versuche zu benötigen, um zum ersten Erfolg zu kommen
 

Geometrische Verteilung - Gleichung - 1

 

Variante 2: Wahrscheinlichkeit n Fehlversuche vor dem ersten Erfolg zu haben
 

Geometrische Verteilung - Gleichung - 2
 

Oftmals gilt es Fragen zu beantworten, mit welcher Wahrscheinlichkeit ein Ereignis höchstens zu erwarten ist P(X  k). Hierfür wird die Verteilungsfunktion verwendet (Kumulierte Wahrscheinlichkeit).

Verteilungsfunktion:

 

Variante 1: Wahrscheinlichkeit genau n Versuche zu benötigen, um zum ersten Erfolg zu kommen
 

Geometrische Verteilung - Gleichung - 3

 

Variante 2: Wahrscheinlichkeit n Fehlversuche vor dem ersten Erfolg zu haben
 

Geometrische Verteilung - Gleichung - 4

 

p: Wahrscheinlichkeit

k: Anzahl durchzuführender Versuche bis zum erstmaligen Eintritt des interessierenden Ereignisses

 

In diesem Modul kann der Einfluss der Wahrscheinlichkeit auf den Verlauf der Verteilungs- und Dichtefunktion bei einer Geometrischen Verteilung untersucht werden. Es wird ausschließlich oben beschriebene Variante 1 behandelt.

 

Berechnung und Darstellung


MathProf - Verteilung geometrisch - Dichte - Wahrscheinlichkeitsrechnung - Zufallsvariable - Erwartungswert - Zufallsgröße - Wahrscheinlichkeitsfunktion - Wahrscheinlichkeitsverteilung - Dichtefunktion - Wahrscheinlichkeitstabelle - Histogramm - Erwartungswert - Zufallsgröße - Dichtefunktion - Wahrscheinlichkeitsdichte - Wahrscheinlichkeit - Erwartungswert

MathProf - Verteilung geometrisch - Wahrscheinlichkeitsrechnung - Zufallsvariable - Erwartungswert - Zufallsgröße - Wahrscheinlichkeitsfunktion - Wahrscheinlichkeitsverteilung - Verteilungsfunktion - Wahrscheinlichkeitstabelle - Histogramm - Erwartungswert - Zufallsgröße - Verteilungsfunktion - Wahrscheinlichkeitsverteilung - Wahrscheinlichkeit - Erwartungswert

Um Berechnungen durchführen zu lassen und derartige Zusammenhänge grafisch zu analysieren, gehen Sie wie nachfolgend beschrieben vor:

  1. Legen Sie im Feld Anzahl Versuche n die Anzahl durchzuführender Versuche fest und geben Sie in das Feld Wahrscheinlichkeit p die Wahrscheinlichkeit ein, mit welcher das interessierende Ereignis eintritt.
     
  2. Bedienen Sie die Schaltfläche Berechnen, so werden die entsprechenden Ergebnisse für die Ereigniswahrscheinlichkeiten P(X=k) sowie für die Verteilung F(X) für k = 0...x in den Tabellen ausgegeben.
     
  3. Nach einer Bedienung der Schaltfläche Darstellen stellt das Programm das Diagramm für die Dichtefunktion (Wahrscheinlichkeitsdichte) dieser Verteilung dar (Kontollschalter Dichte ist aktiviert). Um das entsprechende Verteilungsdiagramm angezeigt zu bekommen, aktivieren Sie den Kontrollschalter Verteilung.

Bedienformular


MathProf - Geometrische Verteilung - Ereigniswahrscheinlichkeit - Zufallsvariable - Erwartungswert - Zufallsgröße - Wahrscheinlichkeitsfunktion - Wahrscheinlichkeitsverteilung

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Benutzung der entsprechenden Steuerelemente folgende zusätzliche Einstellungen vornehmen:
 

  • Diagramm und Kurve: Darstellung des Verteilungs- oder Dichtediagramms in Form von Balken und Linien
  • Nur Kurve: Darstellung des Verteilungs- oder Dichtediagramms in Form von Linien
  • Nur Diagramm: Darstellung des Verteilungs- oder Dichtediagramms in Form von Balken
  • Balkenbreite: Einstellung der Balkenbreite des entsprechenden Diagramms
  • Beschriftung: Anzeige der Verteilungs- bzw. Dichtewerte ein-/ausschalten
Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Geometrische Verteilung - Interaktiv

Binomialverteilung

Binomialverteilung - grafische Analyse

Binomialkoeffizienten

 

Beispiel

 

Beim Spiel "Mensch ärgere dich nicht" darf eine Figur erstmals ins Spiel gebracht werden, wenn eine Sechs gewürfelt wird. Wie groß ist die Wahrscheinlichkeit, innerhalb der ersten drei Würfe mindestens einmal eine Sechs zu würfeln?

 

Geometrische Verteilung - Gleichung - 5

 

Wahrscheinlichkeit: p = 1/6

Anzahl der Fehlversuche vor dem ersten Erfolg: k = 2

 

Geometrische Verteilung - Gleichung - 6

 

Somit beträgt die Wahrscheinlichkeit, innerhalb der ersten drei Würfe eine Sechs zu würfeln ca. 42%.

 

Nach Eingabe der Werte k = 2 und p = 0,166666 in die entsprechenden Felder und einer Bedienung der Schaltfläche Berechnen kann der Wert 0,421949 aus der rechtsseitig angeordneten Tabelle für Werte der Verteilung entnommen werden.
 

Weitere Screenshots zu diesem Modul

 

MathProf - Geometrische Verteilung - Tabelle - Erwartungswert - Berechnen - Diagramm - Dichte - Verteilung - Darstellen - Eigenschaften - Graph - Grafik - Beispiel - Zufallsgröße - Histogramm - Dichtefunktion - Wahrscheinlichkeitsdichte - Wahrscheinlichkeit
MathProf - Geometrische Verteilung - Histogramm - Plotter - Statistik - Stichprobe - Wahrscheinlichkeit - Zeichnen - Ereignisse - Verteilungsfunktion - Histogramm - Beispiel - Verteilungsfunktion - Wahrscheinlichkeitsverteilung - Wahrscheinlichkeit - Erwartungswert
MathProf - Geometrische Verteilung - Dichtefunktion - Geometrisch verteilt - Geometrisch verteilte Zufallsgröße - Animation - Berechnen - Verteilung - Stochastik - Erwartungswert - Beispiel - Verteilungsfunktion - Wahrscheinlichkeitsverteilung - Wahrscheinlichkeit - Erwartungswert

  

Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Kurzinfos zum Themengebiet Analysis Kurzinfos zum Themengebiet Geometrie Kurzinfos zum Themengebiet Trigonometrie Kurzinfos zum Themengebiet Algebra Kurzinfos zum Themengebiet 3D-Mathematik Kurzinfos zum Themengebiet Stochastik Kurzinfos zum Themengebiet Vektoralgebra sowie unter Kurzinfos zu sonstigen Themengebieten.
 
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Geometrische Verteilung zu finden.

  
Implementierte Module zum Themenbereich Stochastik


Kombinatorik - Urnenmodell - Pfadregel - Galton-Brett - Statistische Messwertanalyse - Hypothesentest - Binomialverteilung - Binomialverteilung - Interaktiv - Binomialkoeffizienten - Geometrische Verteilung - Geometrische Verteilung - Interaktiv - Poisson-Verteilung - Poisson-Verteilung - Interaktiv - Hypergeometrische Verteilung - Hypergeometrische Verteilung - Interaktiv - Stetige Verteilungen - Glockenkurve - Regressionsanalyse - Stichproben - Stichproben - Verteilungen - Lottosimulation - Vierfeldertest - Bedingte Wahrscheinlichkeit - Zusammenhang von Messwerten - Experimente - Gesetz der großen Zahlen - Berechnung von Pi (Monte-Carlo-Methode)
 

Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
MathProf 5.0
Mathematik interaktiv

 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
 
  
PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 
Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 
 

 
SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen und wissenschaftlichen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozessabläufe zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0
 
Videos zu einigen mit diesem Programm erzeugten Animationen finden Sie unter Videos, oder einen Klick auf die nachfolgend dargestellte Schaltfläche ausführen.
Zu den Videos zu SimPlot 1.0

Zur Inhaltsseite