MathProf - Pfadregeln - Zufallsversuch - Baumdiagramm - Wahrscheinlichkeit

Fachthema: Pfadregel
MathProf - Stochastik - Statistik - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Schüler, Abiturienten, Studenten, Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

Online-Hilfe
für das Modul mit Hilfe dessen sich der Multiplikationssatz
mehrstufiger Laplace-Experimente am Baumdiagramm veranschaulichen lässt.
Dieses Unterprogramm ermöglicht hierdurch die Durchführung der Analyse geltender Sachverhalte bzgl. der Pfadregel.
Nach einer Festlegung relevanter Werte führt der implementierte Rechner die hierfür relevanten Untersuchungen durch, gibt die ermittelten Ergebnisse sowohl grafisch wie auch in einer Tabelle aus und ermöglicht die Analyse der entsprechenden Zusammenhänge.

Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.

Themen und Stichworte zu diesem Modul:Pfadregeln - Summenregel - Mehrstufige Zufallsexperimente - Mehrstufige Zufallsversuche - Zufallsversuch - Einstufiges Zufallsexperiment - Pfade - Regeln - Summenregel - Laplace-Experiment - Laplace-Versuch - Wahrscheinlichkeit - 1. Pfadregel - 2. Pfadregel - Baumdiagramm - Erste Pfadregel - Zweite Pfadregel - Wahrscheinlichkeitsrechnung - Multiplikationssatz - Rechner - Ergebnis - Bild - Summe - Berechnen - Plotter - Graph - Graphik - Darstellung - Berechnung - Darstellen - Auswertung - Auswerten - Beispiel - Definiton - Tabelle - Erklärung - Pfadmultiplikationsregel - Pfadadditionsregel - Wahrscheinlichkeitsverteilung - Wahrscheinlichkeitsbaum - Augenzahl beim Würfeln - Augensumme - Augenzahl - Elementarereignis - Möglichkeiten beim Würfeln - Augensumme beim Würfeln |
Pfadregel
Im kleinen Zusatzmodul [Stochastik] - Pfadregel lässt sich der Multiplikationssatz mehrstufiger Laplace-Experimente (Zufallsversuche) am Baumdiagramm veranschaulichen.
Ein Zufallsexperiment, bei welchem den einzelnen Ereignissen dieselben Wahrscheinlichkeiten zugeordnet werden können, wird als Laplace-Experiment bezeichnet. Zufallsexperimente bestehen häufig aus einer bestimmten Anzahl von Teilexperimenten, die hintereinander ausgeführt werden. Die Ermittlung von Wahrscheinlichkeiten kann in solchen Fällen schnell unübersichtlich werden. Hilfe bietet hierbei die grafische Darstellung mit einem Baumdiagramm. In einem derartigen Diagramm werden die Ausgänge eines Zufallsexperiments als Linien dargestellt und die entsprechenden Wahrscheinlichkeiten dazu geschrieben.
Dieses Unterprogramm bietet die Möglichkeit, sich die Zusammenhänge zur Bestimmung von Wahrscheinlichkeiten prinzipiell grafisch zu veranschaulichen. Eingesetzt werden kann die Pfadregel dann, wenn ein Laplace-Experiment genau 2 mögliche Elementarereignisse besitzt (z.B. Farbe blau oder grau).
1. Pfadregel (Pfadmultiplikationsregel):
Die Wahrscheinlichkeit eines Elementarereignisses in einem mehrstufigen Zufallsexperiment ist gleich dem Produkt der Wahrscheinlichkeiten entlang des Pfades, der zu diesem Ergebnis im Baumdiagramm hinführt. P(D) = P(A)A · P(D)
2. Pfadregel (Pfadadditionsregel):
Die Wahrscheinlichkeit eines Ereignisses in einem mehrstufigen Zufallsexperiment ist die Summe der Wahrscheinlichkeiten der Pfade, die im Baumdiagramm zu diesem Ereignis gehören. P(D ∪ E) = P(D) + P(E)
Berechnung
Am Rollbalken mit der Bezeichnung Wahrscheinlichkeit p kann die Wahrscheinlichkeit für das Eintreten eines der beiden Ereignisse eingestellt werden (voreingestellt: p = 0.5). Mit Hilfe des Rollbalkens Stufen können Sie die Anzahl der Stufen einstellen (voreingestellt: 4).
An den Baumknoten werden die Wahrscheinlichkeiten des Eintretens der entsprechenden Kombination, unter Berücksichtigung der Reihenfolge des Eintretens der Elementarereignisse, angezeigt. Diese werden in der darunter angeordneten Tabelle ausgegeben, wenn das Kontrollkästchen Farben deaktiviert ist. Wird dieses Kontrollkästchen aktiviert, so wird die Reihenfolge der Ereignisse ausgegeben (Zeichenkürzel: b: blau - g: grau).
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Themenbereiche
Beispiel
Werden die Wahrscheinlichkeiten für die vier möglichen Ergebnisse nach zweimaligem Würfeln ermittelt, ergibt sich folgende Regel:
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Baumdiagramm zu finden.
Kombinatorik - Urnenmodell - Pfadregel - Galton-Brett - Statistische Messwertanalyse - Hypothesentest - Binomialverteilung - Binomialverteilung - Interaktiv - Binomialkoeffizienten - Geometrische Verteilung - Geometrische Verteilung - Interaktiv - Poisson-Verteilung - Poisson-Verteilung - Interaktiv - Hypergeometrische Verteilung - Hypergeometrische Verteilung - Interaktiv - Stetige Verteilungen - Glockenkurve - Regressionsanalyse - Stichproben - Stichproben - Verteilungen - Lottosimulation - Vierfeldertest - Bedingte Wahrscheinlichkeit - Zusammenhang von Messwerten - Experimente - Gesetz der großen Zahlen - Berechnung von Pi (Monte-Carlo-Methode)