MathProf - Einheitskreis komplexer Zahlen

Science for all - Maths for you

 

MathProf 5.0 - Mathematik interaktiv

 

Einheitskreis komplexer Zahlen

 

Mit Hilfe des kleinen Unterprogramms [Algebra] - [Komplexe Zahlen] - Einheitskreis komplexer Zahlen lässt sich das Prinzip der Darstellung komplexer Zahlen in der Gauß'schen Zahlenebene veranschaulichen.

 

MathProf - Einheitskreis - komplex


Im Bereich der komplexen Zahlen gibt es für die n-te Wurzel einer Zahl exakt n verschiedene Lösungen. Mit Hilfe der Gauß'schen Zahlenebene lassen sich derartige Zahlen grafisch darstellen. Bei dieser Darstellung wird ersichtlich, dass alle Lösungen der n-ten Wurzel der komplexen Zahl -1 ein regelmäßiges n-Eck bilden, dessen Umkreis den Radius r = 1 besitzt. Es gilt: Ist eine komplexe, nicht reelle Zahl z die n-te Wurzel von 1, so ist auch die zu z konjugiert komplexe Zahl, die an der rellen Achse (x-Achse) gespiegelte Zahl.

Darstellung


Diesen Sachverhalt können Sie prüfen, wenn Sie den Intervallbereich durch die Bedienung des Schiebereglers Wurzelexponent einstellen.

Bedienformular

 

MathProf - Einheitskreis komplexer Zahlen

 

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
 

  • Beschriftung: Beschriftung der komplexen Zahlen ein-/ausschalten
  • n-Eck: Darstellung des regelmäßigen n-Ecks ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Taschenrechner für komplexe Zahlen

Schreibweisen komplexer Zahlen

Berechnungen mit komplexen Zahlen

 

Beispiel


Nach der Positionierung des Schiebereglers Wurzelexponent auf den Wert 5 werden folgende Ergebnisse ausgegeben:

z0 = 1

z1 = 0,309+0,951j

z2 = -0,809+0,588j

z3 = -0,809-0,588j

z4 = 0,309-0,951j
 

Module zum Themenbereich Algebra


Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL - Gleichungssystem (Differentialgleichungen) - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte


Zur Inhaltsseite