MathProf - Projektion von Vektoren - Vektorpojektion - Vektor - Projektion

MathProf - Mathematik-Software - Vektorprojektion | Vektoren | Projektion | Orthogonalität

Fachthema: Projektion von Vektoren

MathProf - Sphärische Geometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Ausbildung, die Schule und den Beruf.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Vektorprojektion | Vektoren | Projektion | Orthogonalität

Online-Hilfe
für das Modul Lineare Algebra und analytische Geometrie zur Durchführung der Vektorrechnung unter Anwendung der räumlichen Projektion eines Vektors auf einen anderen.

Ein frei bewegbares und drehbares, dreidimensionales Koordinatensystem erlaubt die Durchführung interaktiver Analysen bzgl. Sachverhalten und entsprechender Zusammenhänge zu diesem Fachthema. Auch die Ausführung verschiedener 3D-Animationen mit Gebilden dieser Art kann veranlasst werden.

Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind implementiert.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Vektorielle Projektion - Projektion von Vektoren - Vektor projizieren - Formel - Normalprojektion - Grafik - Graph - Grafisch - Bilder - Darstellung - Berechnung - Darstellen - Weiterleitung von Vektoren - Vektorprojektion berechnen

  
Durch die Ausführung eines Klicks auf die entsprechende nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
   

Projektion eines Vektors (3D)


Im Unterprogramm [Vektoralgebra] - [Grundlegendes (3D)] - Vektorprojektion kann eine Vektorprojektion durchgeführt werden.

 

MathProf - Vektorprojektion - Projektion von Vektoren

 

Durch Projektion eines Vektors b auf einen Vektor a entsteht der Vektor:

 

Vektorprojektion - Gleichung 1

 

(Komponente des Vektors b in Richtung des Vektors a)

 

In diesem Unterprogramm kann die Projektion eines Vektors b auf einen Vektor a durchgeführt werden.
 

Screenshots

 

MathProf - Vektorprojektion - Projektion von Vektoren - Vektor Projektion - Vektorrechnung - Vektoren  - 1
MathProf - Vektorprojektion - Projektion von Vektoren - Vektor Projektion - Vektorrechnung - Vektoren - 2

 
Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Berechnung und grafische Darstellung

 

Um die Projektion eines Vektors b auf einen Vektor a vorzunehmen, sollten Sie Folgendes ausführen:
 

  1. Geben Sie die Koeffizienten der Vektoren a und b in die hierfür vorgesehenen Felder a und b ein.
     
  2. Bedienen Sie die Schaltfläche Berechnen.
     
  3. Möchten Sie sich Zusammenhänge grafisch veranschaulichen, so aktivieren Sie Kontrollschalter Automatisch oder Statisch und bedienen die Schaltfläche Darstellen.

Darstellungsbereich

 

Bei Ausgabe der Darstellung ermöglicht das Programm die Bemessung des Darstellungsbereichs auf eine der folgenden Arten und Weisen:
 

  • Automatisch

  • Statisch

  1. Automatisch:
    Wird die Einstellung Automatisch durch die Aktivierung des dafür vorgesehenen Kontrollschalters gewählt, so ermittelt das Programm alle zur vollständigen Darstellung des Gebildes erforderlichen x-, y- und z-Koordinatenwerte automatisch und bemisst den Darstellungsbereich dementsprechend.
     

  2. Statisch:
    Wird der Kontrollschalter Statisch aktiviert, so verwendet das Programm bei Aufruf der Darstellung den unter Abs. Bereich voreingestellten Darstellungsbereich und beschneidet Gebilde an Stellen, die außerhalb dessen liegen. Diesen Bereich können Sie bei Ausgabe der Darstellung verändern, indem Sie den auf dem Bedienformular zur Verfügung stehenden Rollbalken Bereich positionieren. Der maximal einstellbare Wert entspricht dem Doppelten des unter Abs. Bereich auf dem Hauptformular des Unterprogramms vorgegebenen Werts.

Darstellung - Optionen


Im Formularbereich Darstellung - Optionen können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende Einstellungen vornehmen, die bei Ausgabe der grafischen Darstellung der Zusammenhänge wirksam werden:

  • Beschriften: Beschriftung dargestellter Punkte ein-/ausschalten
  • Hilfslinien: Darstellung von Hilfslinien ein-/ausschalten
  • Textausgabe: Anzeige ermittelter Ergebnisse bei Ausgabe der Darstellung ein-/ausschalten

Allgemein

 

Grundlegendes zum Umgang mit dem Programm bei der Ausgabe dreidimensionaler grafischer Darstellungen erfahren Sie unter Dreidimensionale Grafiken - Handling. Wie Sie das Layout einer 3D-Darstellung konfigurieren können, erfahren Sie unter 3D-Layoutkonfiguration.

 

Weitere Themenbereiche

 

Komponentendarstellung (3D)

Vektorprodukt (3D)

Skalarprodukt (3D)

Spatprodukt (3D)

Tripelprodukt (3D)

 

Beispiel


Es gilt, die Projektion des Vektors

Vektorprojektion - Gleichung 2

auf den Vektor

Vektorprojektion - Gleichung 3

ausführen zu lassen.

Vorgehensweise:

Nach einer Eingabe der Koeffizientenwerte für die beiden Vektoren, ermittelt das Programm nach einer Bedienung der Schaltfläche Berechnen folgendes Ergebnis:

Durch die Projektion des Vektors b auf Vektor a entsteht Vektor ba:

Vektorprojektion - Gleichung 4 
 

Weitere Screenshots zu diesem Modul

 

MathProf - Vektorpojektion - Projektion - Vektor - Berechnen - Beispiel - Vektorrechnung - Vektoren
MathProf - Vektorpojektion - Projektion - Vektor - Berechnen - Beispiel - Vektorrechnung - Vektoren
MathProf - Vektorpojektion - Projektion - Vektor - Berechnen - Beispiel - Vektorrechnung - Vektoren

   
Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Kurzinfos zum Themengebiet Analysis Kurzinfos zum Themengebiet Geometrie Kurzinfos zum Themengebiet Trigonometrie Kurzinfos zum Themengebiet Algebra Kurzinfos zum Themengebiet 3D-Mathematik Kurzinfos zum Themengebiet Stochastik Kurzinfos zum Themengebiet Vektoralgebra sowie unter Kurzinfos zu sonstigen Themengebieten.

 

Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter folgenden Adressen zu finden.

Wikipedia - Projektion
Wikipedia - Vektor

 
Implementierte Module zum Themenbereich Vektoralgebra


Gerade und Vektoren - Vektorielle Linearkombination - Vektorielles Teilverhältnis - Vektoraddition in der Ebene - Resultierende - Komponentendarstellung (3D) - Vektorprodukt (3D) - Skalarprodukt (3D) - Spatprodukt (3D) - Vektorprojektion (3D) - Tripelprodukt (3D) - Numerische Vektoraddition im Raum - Grafische Vektoraddition im Raum (3D) - Gerade in Punkt-Richtungs-Form (3D) - Gerade in 2-Punkte-Form (3D) - Ebene in Punkt-Richtungs-Form (3D) - Ebene in 3-Punkte-Form (3D) - Ebene in Normalen-Form (3D) - Ebene in Koordinaten-Form (3D) - Zwei Ebenen (3D) - Kugel - Gerade (3D) - Kugel - Ebene - Punkt (3D) - Kugel - Kugel (3D)
 

Weitere Produkte
  
Nachfolgend aufgeführt finden Sie Kurzinfos zu weiteren von uns entwickelten Produkten.

PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einfussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik


Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit von Einflussgrößen bei der Ausgabe grafischer Darstellungen, besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 
Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1

Zur Inhaltsseite