MathProf - Stetige Verteilungen (Normalverteilung - F-Verteilung)

Science for all - Maths for you

 

MathProf 5.0 - Mathematik interaktiv

 

Stetige Verteilungen
(Normalverteilung - F-Verteilung - Weibull-Verteilung)

Im Unterprogramm [Stochastik] - [Stetige Verteilungen] - Stetige Verteilungen lassen sich Berechnungen mit stetigen Verteilungen durchführen.
 
MathProf - Stetige Verteilung
 
Stetige Verteilungen beschreiben Wahrscheinlichkeitsverteilungen, bei welchen die Zufallsgröße innerhalb eines Bereichs reelle Zahlenwerte annehmen kann. Bei diskreten Verteilungen hingegen sind dies nur ganzzahlige Werte.
 
Mit Hilfe dieses Moduls können Werte für die Dichte und Verteilung folgender Verteilungsarten errechnet werden:
 
  • Beta - Verteilung
  • Cauchy - Verteilung
  • Chi ² - Verteilung
  • Exponential - Verteilung
  • F - Verteilung
  • Gamma - Verteilung
  • Laplace - Verteilung
  • Logistische Verteilung
  • Logarithmische Normalverteilung
  • Gauß'sche Normalverteilung
  • Standard-Normalverteilung
  • Pareto - Verteilung
  • Student-t - Verteilung
  • Dreiecksverteilung
  • Uniform - Verteilung
  • Weibull - Verteilung
  • Neg. Binomialverteilung
  • Maxwell - Verteilung
Darüber hinaus ist es möglich, die Quantile für Irrtumswahrscheinlichkeiten der entsprechenden Verteilungsarten ermitteln zu lassen.
 
Berechnung und Darstellung

MathProf - Laplace Verteilung

Um Wahrscheinlichkeitsberechnungen durchführen zu lassen und sich Zusammenhänge grafisch zu veranschaulichen, sollten Sie folgendermaßen vorgehen:
 
  1. Wählen Sie durch einen Klick auf das entsprechende Registerblatt Dichte und Verteilung aus, ob Dichte oder Verteilung einer Verteilungsart ermittelt werden sollen.
     
  2. Selektieren Sie durch die zur Verfügung stehende Auswahlbox Verteilungsart, mit welcher Verteilungsart Berechnungen durchzuführen sind.
     
  3. Legen Sie die benötigten Parameterwerte bzw. Freiheitsgrade durch die Eingabe der entsprechenden Zahlen in die dafür vorgesehenen Felder im Formularbereich Parameter fest.
     
    Bei den Verteilungsarten sind die Werte folgender Parameter bzw. Freiheitsgrade festzulegen:
     
    Beta-Verteilung: Parameter α und β
    Cauchy-Verteilung: Parameter x0 und γ
    Chi²-Verteilung: Freiheitsgrad F
    Exponential-Verteilung: Parameter
    λ
    F-Verteilung: Freiheitsgrad F1 und Freiheitsgrad F2
    Gamma-Verteilung: Parameter k und
    φ
    Laplace-Verteilung: Parameter μ und b
    Logistische Verteilung: Parameter
    μ und s
    Logarithmische Normalverteilung: Parameter
    μ und s2
    Gauß'sche Normalverteilung: Parameter
    μ und σ2
    Standard-Normalverteilung: -----
    Pareto-Verteilung: Parameter k und xm
    Student-t-Verteilung: Freiheitsgrad F
    Dreiecksverteilung: Parameter a, b und c
    Uniform-Verteilung: Parameter a und b
    Weibull-Verteilung: Parameter
    λ und k
    Neg. Binomialverteilung: Parameter k und r
    Maxwell-Verteilung: Parameter a
     
  4. Definieren Sie den Wertebereich (von x1...bis x2) und die zur Berechnung erforderliche Schrittweite durch die Eingabe der entsprechenden Werte in die dafür vorgesehenen Felder.
     
  5. Bedienen Sie die Schaltfläche Berechnen, so werden die Ergebnisse in den zur Verfügung stehenden Tabellen ausgegeben.
     
  6. Dichte- und Verteilungsskurven können Sie sich anzeigen lassen, indem Sie die Schaltfläche Darstellen bedienen.
Möchten Sie die Ergebnisse der zuletzt durchgeführten Berechnung löschen, so bedienen Sie hierfür die Schaltfläche Löschen.
 
Bedienformular
 
MathProf - Maxwell - Verteilung
 
Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
 
  • Dichtekurve: Darstellung der Dichtekurve der Verteilung ein-/ausschalten
  • Verteilungskurve: Darstellung der Verteilungskurve der Verteilung ein-/ausschalten
Allgemein
 
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
 
Mathematische Zusammenhänge
 
Beta-Verteilung:
 
Dichte:
 
f(x,a,b) = xa-1(1-x)b-1/B(a,b)
 
Verteilung:
 
F(x,a,b) = Ix(a,b)
 
mit:
Beta-Verteilung - Gleichung - 1
Beta-Verteilung - Gleichung - 2
Beta-Verteilung - Gleichung - 3
Beta-Verteilung - Gleichung - 4
 
a,b: Parameter (a > 0, b > 0)
B(a,b): Beta-Funktion
Ix(a,b): regularisierte unvollständige Betafunktion
x: Zufallsgröße
 
 
Cauchy-Verteilung:
 
Dichte:
Cauchy Verteilung - Gleichung - 1
 
Verteilung:
Cauchy Verteilung - Gleichung - 2
 
x0,γ: Parameter (γ > 0)
x: Zufallsgröße
 
 
Chi²-Verteilung:
 
Dichte:
 
Chi2-Verteilung - Gleichung - 1
 
Verteilung:
Chi2-Verteilung - Gleichung - 2
 
n: Freiheitsgrad (n 0)
x: Zufallsgröße
 
 
Exponential-Verteilung:
 
Dichte:
 
Exponentialverteilung - Gleichung - 1
 
Verteilung:
 
Exponentialverteilung - Gleichung - 2
 
λ: Parameter (λ > 0)
x: Zufallsgröße
 
 
F-Verteilung:
 
Dichte:
 
F-Verteilung - Gleichung - 1
 
Verteilung:
F-Verteilung - Gleichung - 2
F-Verteilung - Gleichung - 3
mit:
F-Verteilung - Gleichung - 4
F-Verteilung - Gleichung - 5
m,n: Freiheitsgrade (m > 0, n > 0)
x: Zufallsgröße
 
 
Gamma-Verteilung:
 
Dichte:
Gamma-Verteilung - Gleichung - 1
Verteilung:
 
Gamma-Verteilung - Gleichung - 2
 
k,f: Parameter (k > 0, φ > 0)
x: Zufallsgröße
 
 
Laplace-Verteilung:
 
Dichte:
 
Laplace-Verteilung - Gleichung - 1
 
Verteilung:
 
Laplace-Verteilung - Gleichung - 2
μ,b: Parameter (b > 0)
x: Zufallsgröße
 
 
Logistische-Verteilung:
 
Dichte:
 
Logistische Verteilung - Gleichung - 1
 
Verteilung:
 
Logistische Verteilung - Gleichung - 2
 
μ,s: Parameter  (s > 0)
x: Zufallsgröße
 
 
Logarithmische-Normalverteilung:
 
Dichte:
Logarithmiache Normalverteilung - Gleichung - 1
 
Verteilung:
 
Logarithmiache Normalverteilung - Gleichung - 2
 
mit:
Logarithmiache Normalverteilung - Gleichung - 3
 
μ,σ: Parameter (σ > 0)
x: Zufallsgröße
 
 
Gauß'sche-Normalverteilung:
 
Dichte:
Gauss-Verteilung- Gleichung - 1
 
Verteilung:
 
Gauss-Verteilung- Gleichung - 2
mit:
Gauss-Verteilung- Gleichung - 3
μ,s: Parameter (σ² > 0)
x: Zufallsgröße
 
 
Standard-Normalverteilung:
 
Dichte:
Standard-Normalverteilung- Gleichung - 1
 
Verteilung:
 
Standard-Normalverteilung- Gleichung - 2
mit:
Standard-Normalverteilung- Gleichung - 3
 
x: Zufallsgröße
 
 
Pareto-Verteilung:
 
Dichte:
 
Pareto-Verteilung - Gleichung - 1
 
Verteilung:
 
Pareto-Verteilung - Gleichung - 2
 
k,xm: Parameter (k > 0, xm > 0)
x: Zufallsgröße
 
 
Student-t-Verteilung:
 
Dichte:
 
Student-t-Verteilung - Gleichung - 1
 
Verteilung:
 
Student-t-Verteilung - Gleichung - 2
Student-t-Verteilung - Gleichung - 3
mit:
Student-t-Verteilung - Gleichung - 4
Student-t-Verteilung - Gleichung - 5
n: Freiheitsgrade (n > 0)
x: Zufallsgröße
 
 
Dreiecksverteilung:
 
Dichte:
 
Dreiecksverteilung - Gleichung - 1
 
Verteilung:
 
Dreiecksverteilung - Gleichung - 2
 
a,b,c: Parameter (a < b, a < c < b)
x: Zufallsgröße
 
 
Uniform-Verteilung:
 
Dichte:
 
Uniform-Verteilung - Gleichung - 1
 
Verteilung:
 
Uniform-Verteilung - Gleichung - 2
 
a,b: Parameter
x: Zufallsgröße
 
 
Weibull-Verteilung:
 
Dichte:
 
Weibull-Verteilung - Gleichung - 1
 
Verteilung:
 
Weibull-Verteilung - Gleichung - 2
 
λ,k: Parameter (λ > 0, k > 0)
x: Zufallsgröße
 
 
Negative Binomialverteilung:
 
Dichte:
 
Negative Binomialverteilung - Gleichung - 1
 
Verteilung:
 
Negative Binomialverteilung - Gleichung - 2
Negative Binomialverteilung - Gleichung - 3
mit:
Negative Binomialverteilung - Gleichung - 4
Negative Binomialverteilung - Gleichung - 5
k,r: Parameter (k {0,1,3...}, r > 0)
x: Zufallsgröße
 
 
Maxwell Verteilung:
 
Dichte:
Maxwell-Verteilung - Gleichung - 1
 
Verteilung:
Maxwell-Verteilung - Gleichung - 2
 
mit:
Maxwell-Verteilung - Gleichung - 3
a: Parameter (a > 0)