MathProf - Isogonal konjugierte Punkte - Transversalen - Inkreis

MathProf - Mathematik-Software - Isogonal konjugierte Punkte des Dreiecks | Inkreis

Fachthema: Isogonal konjugierte Punkte

MathProf - Trigonometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Ausbildung, die Schule und den Beruf.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Isogonal konjugierte Punkte des Dreiecks | Inkreis

Online-Hilfe
für das Modul zur Durchführung interaktiver Untersuchungen
bzgl. der isogonal konjugierten Punkte eines Dreiecks.


Das Berechnen der Werte erforderlicher Größen in diesem Unterprogramm erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 
Durch die Ausführung eines Klicks auf die entsprechende nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
  

Isogonal konjugierte Punkte - Ecktransversalen

 

Das Unterprogramm [Trigonometrie] - Isogonal konjugierte Punkte ermöglicht die Darstellung von Kurven, welche durch isogonal konjugierte Punkte eines Dreiecks beschrieben werden.

 

MathProf - Isogonal konjugierte Punkte - Dreieck - Winkel - Inkreis - Gerade

 

Gegeben seien ein Dreieck ABC, sowie ein Punkt P der nicht auf einer Dreiecksseite liegt. Werden die Geraden (Ecktransversalen) durch die Punkte A und P, B und P sowie C und P an den Winkelhalbierenden der Dreiecksinnenwinkel α, β und γ gespiegelt, so schneiden sich die Spiegelbilder derer in einem Punkt P'. Punkt P' wird als der zu P isogonal konjugierte Punkt bezüglich des Dreiecks ABC bezeichnet.

 

Wird diese Definition nicht nur auf Punkt P, sondern auf die Menge aller Punkte einer Geraden durch die Punkte P und Q angewandt und werden für alle Punkte dieser Geraden isogonal konjugierte Punkte ermittelt, so werden hierdurch Kurven beschrieben, die Kegelschnitte darstellen.

 

Verläuft die Gerade durch die Punkte P und Q den Umkreismittelpunkt des Dreiecks, sowie dessen Lemoine-Punkt, so bildet sich eine gleichseitige Hyperbel, die durch die Eckpunkte des Dreiecks, dessen Schwerpunkt, dessen Höhenschnittpunkt, dessen Spieker-Punkt, dessen Fermat-Punkte und dessen Napoleon-Punkte verläuft.

 

Dieses Unterprogramm nutzt die oben beschriebene Methode, unter Verwendung der Menge aller Punkte einer Strecke PQ.

 

Wird das Kontrollkästchen Ecktransversalen aktiviert, so werden die Ecktransversalen an Punkt P eingeblendet. Wird das Kontrollkästchen gespieg. Ecktransv. aktiviert, so werden die an den Winkelhalbierenden der Dreiecksinnenwinkel gespiegelten Ecktransversalen an Punkt P eingeblendet. Möchten Sie außerdem die Winkelhalbierenden des Dreiecks darstellen lassen, so aktivieren Sie das Kontrollkästchen Winkelhalbierende. Das Kontrollkästchen Inkreis ermöglicht die Darstellung des Inkreises des Dreiecks.

 

Darstellung

 

Führen Sie Folgendes aus, um Analysen zu diesem Fachthema durchzuführen:
 

  1. Zur exakten Positionierung der Eckpunkte des Dreiecks klicken Sie auf die Schaltfläche Punkte auf dem Bedienformular und geben die hierfür relevanten Koordinatenwerte im daraufhin erscheinenden Formular ein. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     

  2. Möchten Sie die Positionen von Anfasspunkten des Dreiecks mit der Maus verändern, klicken Sie in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste.
     

  3. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die Schrittweite bzw. die Anzahl zu verwendender Winkelschritte einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

Hinweis:

Um sich detaillierte Informationen bzgl. der Eigenschaften des Dreiecks ABC ausgeben zu lassen, wählen Sie den Menüpunkt Datei - Dreieckseigenschaften. Hierauf erscheint ein Ausgabefenster mit den relevanten Daten. Um diese im *.txt-Format zu speichern, verwenden Sie den dort vorhandenden Menüeintrag Datei - Ergebnisse speichern.

 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Bedienformular

 

MathProf - Isogonal konjugierte Punkte - Dreieck - Winkelhalbierende - Ecktransversalen
 

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • P beschriften: Punktbeschriftung ein-/ausschalten
  • Koordinaten: Anzeige der Koordinatenwerte dargestellter Punkte ein-/ausschalten
  • Kurve hervorheben: Linienstärke der Kurve normal/fett

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Allgemeines Dreieck aus Seitenlängen und Winkeln

Allgemeines Dreieck durch 3 Punkte

Allgemeines Dreieck – Interaktiv

 

Beispiel

 

Lassen Sie sich ein Dreieck darstellen, welches durch die Eckpunkte A (-2 / 5), B (-5 / -3) und C (2 / -7) beschrieben wird und positionieren Sie die Punkte P auf (0 / -9) und Q auf (-4 / 8), so gibt das Programm (nach Aktivierung der entsprechenden Kontrollkästchen) folgende Werte aus:

 

Isogonal konjugierte Punkte:

 

Koordinaten des zu P isogonal konjugierten Punkts: P' (-5,016 / -11,677)

Koordinaten des zu Q isogonal konjugierten Punkts: Q' (-6,615 / -1,38)

 

Inkreis des Dreiecks:

 

Mittelpunkt: MP (-2,129 / -1,964)

Radius: r = 2,324

 

Innenwinkel des Dreiecks:

 

Winkel BAC: 38,991°

Winkel ABC: 99,189°

Winkel ACB: 41,82°
 

Weitere Screenshots zu diesem Modul

 

MathProf - Isogonal konjugierte Punkte - Dreieck - Zeichnen - Flächeninhalt - Dreiecksberechnung - Winkel - Inkreis - Umkreis - Höhen - Seitenhalbierende - Beispiel
MathProf - Isogonal konjugierte Punkte - Dreieck - Berechnen - Darstellen - Winkelhalbierende - Seitenhalbierende - Innenwinkel - Plotter - Inkreis - Beispiel
MathProf - Isogonal konjugierte Punkte - Dreieck - Berechnen - Darstellen - Winkelhalbierende - Seitenhalbierende - Innenwinkel - Plotter - Inkreis - Beispiel
   

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen


Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
 

Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Isogonal konjugierte Punkte zu finden.

 
Implementierte Module zum Themenbereich Trigonometrie


Rechtwinkliges Dreieck - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck aus Seitenlängen und Winkeln - Allgemeines Dreieck durch 3 Punkte - Allgemeines Dreieck - Interaktiv - Satz des Pythagoras - Verallgemeinerung des Satz des Pythagoras - Satz des Thales - Höhensatz - Kathetensatz - Winkel am Dreieck - Innenwinkel des Dreiecks - Winkel am Kreis - Winkel an Parallelen - Sinus und Cosinus am Einheitskreis - Tangens und Cotangens am Einheitskreis - Tangentendreieck - Höhenfußpunktdreieck - Lamoen-Kreis - Taylor-Kreis - Euler-Gerade - Simson-Gerade - Satz von Ceva - Isodynamische Punkte des Dreiecks - Isogonal konjugierte Punkte - Spieker-Punkt - Apollonius-Punkt
 

Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
MathProf 5.0
Mathematik interaktiv

 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 
 
 
  
PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 
Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 
 

 
SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0
 
Videos zu einigen mit diesem Programm erzeugten Animationen finden Sie unter Videos, oder einen Klick auf die nachfolgend dargestellte Schaltfläche ausführen.
 
Zu den Videos zu SimPlot 1.0

Zur Inhaltsseite