MathProf - Parameter der Betragsfunktion

MathProf 5.0 - Mathematik interaktiv

 

Parameter der Betragsfunktion

 

Durch die Benutzung des kleinen Unterprogramms [Analysis] - [Parameteranalyse spez. Funktionen] - Parameter der Betragsfunktion kann der prinzipielle Einfluss von Parametern auf Betragsfunktionen untersucht werden.

 

MathProf - Betrag - Funktion
 

Mit den auf dem Bedienformular zur Verfügung stehenden Rollbalken haben Sie die Möglichkeit die Parameter a, b, c, d und e einer Betragsfunktion der Form

Y = a |xb| + c + d |xe|

zu ändern und somit deren Wirkung auf den Funktionsverlauf zu untersuchen.

Eine Veränderung der Parameter beeinflusst/bewirkt:

a,d: Streckung bzw. Stauchung der Funktion in y-Richtung

b,e: Veränderung der Lage der Funktion in x-Richtung

c: Verschiebung der Funktion in y-Richtung

 

Darstellung


Gehen Sie folgendermaßen vor, um Untersuchungen mit diesem Unterprogramm durchzuführen:

  1. Durch die Positionierung der Schieberegler Parameter a, Parameter b, Parameter c, Parameter d und Parameter e können Sie die Parameter a, b, c und d der o.a. Funktion verändern und somit deren Einfluss analysieren.
     
  2. Möchten Sie sich die Koordinatenwerte eines Punkts der Kurve ausgeben lassen, so können Sie die Schaltfläche Punkt auf dem Bedienformular nutzen und den hierfür benötigten Abszissenwert im daraufhin erscheinenden Formular eingeben. Aktivieren Sie hierfür zuvor das Kontrollkästchen Punkt. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  3. Soll die Position des Fangpunkts mit der Maus verändert werden, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach rechts oder nach links.
     
  4. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die zu verwendende Verzögerung einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

Bedienformular

 

MathProf - Betragsfunktion - Grafik


Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung des entsprechenden Kontrollkästchens folgende zusätzliche Einstellung vornehmen:

  • Vertikalen: Darstellung der Vertikalen an Bereichsgrenzen ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Beispiel


Wurden durch die Positionierung der Rollbalken folgende Werte eingestellt

Parameter a: 0,3

Parameter b: -2

Parameter c: -6

Parameter d: 0,9

Parameter e: 1,6

 

so wird die Funktion f(x) = 0,3·|x +2|-6+0,9·|x1,6| dargestellt.

 

Wird die Abszissenposition des Punktes P auf X = 12 festgelegt, so gibt das Programm für den Funktionswert an dieser Stelle den Wert Y = 7,56 aus.
 

Module zum Themenbereich Analysis


Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Integer-Funktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form -Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integral - Integral - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen


Zur Inhaltsseite