MathProf - Innenwinkel des Dreiecks

Science for all - Maths for you

 

MathProf 5.0 - Mathematik interaktiv

 

Innenwinkel des Dreiecks

 

Im Unterprogramm [Trigonometrie] - [Dreieckswinkel] - Innenwinkel des Dreiecks können Untersuchungen zum Innenwinkelsatz durchgeführt werden.

 

 

Die Summe der Innenwinkel eines beliebigen Dreiecks beträgt stets 180°. Dieser Sachverhalt kann mit Hilfe dieses Unterprogramms analysiert werden. Das Programm ermittelt die Beträge der Innenwinkel und gibt diese aus.

 

Darstellung


Gehen Sie folgendermaßen vor, um sich diese Zusammenhänge zu veranschaulichen:

  1. Legen Sie durch die Bedienung des Schiebereglers Strecke AB die Hypotenusenlänge c des Dreiecks fest.
     
  2. Möchten Sie die Koordinatenwerte des Punktes C exakt festlegen, so können Sie die Schaltfläche Punkt auf dem Bedienformular nutzen und die entsprechenden Werte im daraufhin erscheinenden Formular eingeben. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  3. Soll die Lage des Punktes C mit der Maus verändet werden, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach links oder nach rechts.
     
  4. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. die zu verwendenden Werte für Schrittweite bzw. Verzögerung einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

Hinweis:

Um sich detaillierte Informationen bzgl. der Eigenschaften des Dreiecks ABC ausgeben zu lassen, wählen Sie den Menüpunkt Datei - Dreieckseigenschaften. Hierauf erscheint ein Ausgabefenster mit den relevanten Daten. Um diese im *.txt-Format zu speichern, verwenden Sie den dort vorhandenden Menüeintrag Datei - Ergebnisse speichern.

 

Bedienformular


 

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
 

  • Punkte beschriften: Beschriftung des Mausfangpunktes des Dreiecks ein-/ausschalten
  • Koordinaten: Anzeige der Koordinaten des Mausfangpunktes und der Eckpunkte des Dreiecks ein-/ausschalten
  • Dreieck füllen: Farbfüllung des Dreiecks ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Winkel am Dreieck

Winkel am Kreis

Winkel an Parallelen

 

Beispiel

 

Bei einer Positionierung des Punkts C auf (-3 / 5) und einer Festlegung der Länge der Strecke AB auf 10, ermittelt das Programm folgende Werte für die Innenwinkel des dargestellten Dreiecks:

 

Innenwinkel alpha (CAB) des Dreiecks: 68,199°

Innenwinkel beta (ABC) des Dreiecks: 32,005°

Innenwinkel gamma (ACB) des Dreiecks: 79,796°

 

Die Summe aller Innenwinkel beträgt hierbei:

 

68,199° + 32,005° + 79,796° = 180°
 

Zudem gibt das Programm Folgendes aus:

Punkt A (-5 / 0)

Punkt B (5 / 0)

Punkt C (-3 / 5)

 

Länge der Strecke BC: 9,434

Länge der Strecke AC: 5,385

Länge der Strecke AB: 10

 

Der Flächeninhalt des Dreiecks beträgt A = 25,402 FE

 

Wird Punkt C an eine beliebige Position verschoben, so ist zu erkennen, dass die Summe aller Innenwinkel des Dreiecks stets konstant bleibt und 180° beträgt.
 

Module zum Themenbereich Trigonometrie


Rechtwinkliges Dreieck - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck aus Seitenlängen und Winkeln - Allgemeines Dreieck durch 3 Punkte - Allgemeines Dreieck - Interaktiv - Satz des Pythagoras - Verallgemeinerung des Satz des Pythagoras - Satz des Thales - Höhensatz - Kathetensatz - Winkel am Dreieck - Innenwinkel des Dreiecks - Winkel am Kreis - Winkel an Parallelen - Sinus und Cosinus am Einheitskreis - Tangens und Cotangens am Einheitskreis - Tangentendreieck - Höhenfußpunktdreieck - Lamoen-Kreis - Taylor-Kreis - Euler-Gerade - Simson-Gerade - Satz von Ceva - Isodynamische Punkte des Dreiecks - Isogonal konjugierte Punkte - Spieker-Punkt - Apollonius-Punkt


Zur Inhaltsseite