MathProf - Berechnung von Pi (Monte-Carlo-Methode)

MathProf - Mathematik-Software - Pi | Bestimmung | Monte-Carlo-Methode | Simulation
 
MathProf - Mathematik für Schule, Studium und Wissenschaft - Pi | Bestimmung | Monte-Carlo-Methode | Simulation

Online-Hilfe für das Modul
zur experimentellen Bestimmung der Kreiszahl Pi

Berechnung von Pi (Monte-Carlo-Methode)

 

Das Unterprogramm [Stochastik] - [Sonstiges] - Berechnung von Pi (Monte-Carlo-Methode) ermöglicht die experimentelle Bestimmung der Kreiszahl Pi, mittels dem Buffon'schen Nadelexperiment.

 

MathProf - Pi-Berechnung - Kreiszahl - Buffon - Nadelexperiment - Zufall - Monte-Carlo-Methode


Hierbei wird ein Kreis mit dem Durchmesser d = 1 und ein darum liegendes Quadrat dargestellt. Mit Hilfe eines Zufallsgenerators werden durch n Versuche Punkte erzeugt und es wird die Anzahl derer ermittelt, die im Quadrat liegen. Liegt ein Punkt zudem im Kreis, so gilt dies als Treffer k und es ergibt sich daraus der Zusammenhang π = 4·k/n.

Durchführung


Nach jeder Bedienung der Schaltfläche Berechnen werden 10000 Versuche durchgeführt. Aufgrund der numerisch ermittelten Trefferzahl wird die Kreiszahl π näherungsweise errechnet und die Punkte, welche sich innerhalb des Kreises befinden (Treffer), werden grafisch dargestellt.

Numerisch ausgegeben werden die Anzahl der durchgeführten Versuche, die absolute Zahl der Treffer, der Näherungswert für die Kreiszahl π, die prozentuale Trefferquote sowie die proz. Abweichung zum wahren Wert von π.

Auf den Anfangszustand zurücksetzen können Sie das Unterprogramm, indem Sie die Schaltfläche Zurücksetzen bedienen.

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Beispiel

Berechnung der Kreiszahl Pi

Module zum Themenbereich Stochastik


Kombinatorik - Urnenmodell - Pfadregel - Galton-Brett - Statistische Messwertanalyse - Hypothesentest - Binomialverteilung - Binomialverteilung - Interaktiv - Binomialkoeffizienten - Geometrische Verteilung - Geometrische Verteilung - Interaktiv - Poisson-Verteilung - Poisson-Verteilung - Interaktiv - Hypergeometrische Verteilung - Hypergeometrische Verteilung - Interaktiv - Stetige Verteilungen - Glockenkurve - Regressionsanalyse - Stichproben - Stichproben - Verteilungen - Lottosimulation - Vierfeldertest - Bedingte Wahrscheinlichkeit - Zusammenhang von Messwerten - Experimente - Gesetz der großen Zahlen - Berechnung von Pi (Monte-Carlo-Methode)


Zur Inhaltsseite