MathProf - Lineares Gleichungssystem (LGS)

MathProf 5.0 - Mathematik interaktiv

 

Lineares Gleichungssystem (LGS)

 

Mit Hilfe des Unterprogramms [Algebra] - Lineares Gleichungssystem können die Lösungen eindeutig bestimmter, linearer Gleichungssysteme ermittelt werden.

 

MathProf - Lineares Gleichungssystem


Ein lineares Gleichungssystem ist dann eindeutig lösbar, wenn die Anzahl der Gleichungen n mit der Anzahl der Variablen n genau übereinstimmt, diese sich nicht widersprechen und nicht linear voneinander abhängig sind.

In diesem Modul können die Lösungen eindeutig bestimmter, linearer Gleichungssysteme (LGS) bis 20. Grades nachfolgend aufgeführter Form ermittelt werden:

a(1,1) · x(1) + ... + a(1,n) · x(n) = b(1)

 

....

 

....

 

....

 

a(n,1) · x(1) + ... + a(n,n) · x(n) = b(n)

 

Hinweis:

Um Berechnungen mit unter- oder überbestimmten Gleichungssystemen durchführen zu lassen, benutzen Sie die Programmmodule Unterbestimmtes lineares Gleichungssystem bzw. Überbestimmtes lineares Gleichungssystem.

 

Berechnung


Vor der Eingabe von Zahlenwerten muss der Grad des zu berechnenden Gleichungssystems durch die Benutzung des Steuerelements Grad des LGS festgelegt werden. Bei jeder Bedienung dieses Steuerelements werden alle Eingaben gelöscht.

Nach der Festlegung der entsprechenden Koeffizientenwerte (linke Seite) und der Absolutglieder (rechte Seite), sowie einer Bedienung des Schalters Berechnen, werden die Lösungen des Systems ausgegeben. Wird mit Hilfe des eingesetzten Verfahrens keine Lösung gefunden, so erhalten Sie eine entsprechende Meldung.

Hinweis:

Es gilt darauf zu achten, dass das zu berechnende Gleichungssystem vor einer Eingabe der Koeffizientenwerte auf die oben aufgeführte Form gebracht werden muss (alle Absolutglieder des LGS müssen rechts des Gleichheitszeichens stehen).

 

Allgemein

 

Über den Menüpunkt Datei - Koeffizienten speichern können Sie die Koeffizienten eines LGS speichern und bei Bedarf über den Menüpunkt Datei - Koeffizienten laden wieder laden.

 

Weitere Themenbereiche

 

Gauß'scher Algorithmus

Unterbestimmtes lineares Gleichungssystem

Überbestimmtes lineares Gleichungssystem

Komplexes Gleichungssystem

 

Beispiel


Es gilt, die reellen Lösungen des nachfolgend aufgestellten linearen Gleichungssystems ermitteln zu lassen:

-3·x1 - 1·x2 - 4·x3 = 4

3·x1 + 3·x2 + 2·x3 = 0

4·x1 + 3·x2 + 5·x3 = 3

 

Vorgehensweise und Lösung:

 

Nach einer Festlegung des Grades des LGS auf 3, der Eingabe folgender Koeffizientenwerte in die Tabelle Koeffizienten:

 

-3   -1    -4

3     3      2

4     3      5
 

und der Eingabe nachfolgend aufgeführter Koeffizientenwerte in die Tabelle Absolutglieder:

4

0

3

 

ermittelt das Programm nach einer Bedienung der Schaltfläche Berechnen die reellen Lösungen des LGS mit:

 

x1 = -8,25

x2 = 5,75

x3 = 3,75
 

Module zum Themenbereich Algebra


Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL - Gleichungssystem (Differentialgleichungen) - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte


Zur Inhaltsseite