MathProf - Lineare Gleichungssysteme - LGS lösen - Homogenes Gleichungssystem

MathProf - Mathematik-Software - Lineares Gleichungssystem | Matrix | Lösungen | Addieren

Fachthema: Lineare Gleichungssysteme

MathProf - Algebra - Software für interaktive und technische Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich hierfür interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Lineares Gleichungssystem | Matrix | Lösungen | Addieren

Online-Hilfe
für das Modul zum Lösen linearer Gleichungssysteme höherer Ordnung.

Der in diesem Unterprogramm eingebundene
Rechner bietet die Möglichkeit ein lineares (quadratisches) Gleichungssystem mit mehreren Unbekannten (Variablen) unter Anwendung des Gauß-Jordan-Verfahrens lösen zu lassen. Hierbei kann es sich um ein homogenes Gleichungssystem oder ein inhomogenes Gleichungssystem handeln.

Es kann eine Koeffizentenmatrix bis zum Grad 20 (20 Unbekannte) festgelegt werden, um dieses Lösungsverfahren zum Berechnen der numerischen Lösungen eines Systems dieser Art zu verwenden. Hinweis zur Lösbarkeit des LGS: Findet der im Programm implementierte LGS-Rechner keine Lösungsmenge, bzw. besitzt das LGS unendliche viele Lösungen, so wird eine entsprechende Meldung ausgegeben.


Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind implementiert.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

LGS - Lösungsverfahren - Lineare Gleichungssysteme lösen - Berechnen der Lösungen von Gleichungssystemen mit zwei oder mehreren Unbekannten - LGS lösen - Gleichungssystem lösen - Homogene Gleichungssysteme - Inhomogene Gleichungssysteme - Gauß-Verfahren - Lösungen eines LGS - Homogenes LGS - Lineares System - LGS berechnen - Systeme linearer Gleichungen - Rechner zum Lösen linearer Gleichungssysteme - Rechner für LGS - Numerisches Verfahren zum Berechnen der Lösungen linearer Gleichungssysteme - Rechner für lineare Gleichungssysteme - Lösungsmenge bestimmen von linearen Gleichungssystemen - Lineare Gleichungssysteme mit 3 bis 20 Unbekannten - Homogenes LGS - Homogenes lineares Gleichungssystem - Inhomogenes Gleichungssystem - Lineare Gleichungen - Numerisches Verfahren zur Berechnung der Lösungen linearer Gleichungssysteme - Lösungen für Systeme mit 3 Gleichungen und 3 Unbekannten - Variablen - Koeffizienten - Quadratisches Gleichungssystem lösen - Quadratisches LGS - Rechnerische Lösung linearer Gleichungssysteme - Gleichungssystem mit 4 Unbekannten - 2 Gleichungen und 2 Unbekannte - 3 Gleichungen und 3 Unbekannte - 4 Gleichungen und 4 Unbekannte - 5 Gleichungen und 5 Unbekannte - 6 Gleichungen und 6 Unbekannte - Gleichungen mit mehreren Variablen lösen - Gleichungen mit mehreren Unbekannten lösen - Lösbare Gleichungssysteme - Unbestimmtes Gleichungssystem - Unendlich viele Lösungen - Lösbarkeit von Gleichungssystemen - LGS Solver - LGS berechnen - LGS numerisch lösen - LGS rechnersich lösen - Verfahren - Lösungen - Nullzeile - Matrixschreibweise - Matrizenschreibweise - Solver für lineare Gleichungssysteme - Lösungsmenge linearer Gleichungssysteme - Numerische Lösung von Gleichungssystemen - LGS mit 3 Unbekannten - LGS mit 4 Unbekannten - Lösungen für Systeme mit 20 Gleichungen und 20 Unbekannten - Systeme linearer Gleichungen

 
Durch die Ausführung eines Klicks auf die entsprechende nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
  

Lineares Gleichungssystem

 

Mit Hilfe des Unterprogramms [Algebra] - Lineares Gleichungssystem können die Lösungen eindeutig bestimmter, linearer Gleichungssysteme (LGS) mit bis zu 20 Unbekannten ermittelt werden.

 

MathProf - Lineares Gleichungssystem - LGS - Koeffizienten - Gleichungssystem lösen - Lineare Gleichungssysteme - LGS lösen - Homogenes Gleichungssystem - Inhomogenes Gleichungssystem
 

Ein lineares Gleichungssystem ist dann eindeutig lösbar, wenn die Anzahl der Gleichungen n mit der Anzahl der Variablen n genau übereinstimmt, diese sich nicht widersprechen und nicht linear voneinander abhängig sind.

In diesem Modul können die Lösungen eindeutig bestimmter, linearer Gleichungssysteme (LGS) bis 20. Grades nachfolgend aufgeführter Form ermittelt werden:

a(1,1) · x(1) + ... + a(1,n) · x(n) = b(1)

 

....

 

....

 

....

 

a(n,1) · x(1) + ... + a(n,n) · x(n) = b(n)

Die Matrixschreibweise eines linearen Gleichungssystems vom Grad 3 lautet beispielsweise:

MathProf - Lineares Gleichungssystem - LGS - Matrix

 

Hinweis:

Um Berechnungen mit unter- oder überbestimmten Gleichungssystemen durchführen zu lassen, benutzen Sie die Programmmodule Unterbestimmtes lineares Gleichungssystem bzw. Überbestimmtes lineares Gleichungssystem.

 

Berechnung


Vor der Eingabe von Zahlenwerten muss der Grad (Anzahl Unbekannter) des zu berechnenden Gleichungssystems durch die Benutzung des Steuerelements Grad des LGS festgelegt werden. Bei jeder Bedienung dieses Steuerelements werden alle Eingaben gelöscht.

Nach der Festlegung der entsprechenden Koeffizientenwerte (linke Seite) und der Absolutglieder (rechte Seite), sowie einer Bedienung des Schalters Berechnen, werden die Lösungen des Systems ausgegeben. Wird mit Hilfe des eingesetzten Verfahrens keine Lösung gefunden, so erhalten Sie eine entsprechende Meldung. Beinhaltet das Gleichungssystem eine Nullzeile, so existiert keine Lösung.

Hinweis:

Es gilt darauf zu achten, dass das zu berechnende Gleichungssystem vor einer Eingabe der Koeffizientenwerte auf die oben aufgeführte Form gebracht werden muss (alle Absolutglieder des LGS müssen rechts des Gleichheitszeichens stehen).

 

Allgemein

 

Über den Menüpunkt Datei - Koeffizienten speichern können Sie die Koeffizienten eines LGS speichern und bei Bedarf über den Menüpunkt Datei - Koeffizienten laden wieder laden.

 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Themenbereiche

 

Gaußscher Algorithmus

Unterbestimmtes lineares Gleichungssystem

Überbestimmtes lineares Gleichungssystem

Komplexes Gleichungssystem

 

Beispiel


Es gilt, die reellen Lösungen des nachfolgend aufgestellten linearen Gleichungssystems mit den 3 Unbekannten x1, x2 und x3 ermitteln zu lassen:

-3·x1 - 1·x2 - 4·x3 = 4

3·x1 + 3·x2 + 2·x3 = 0

4·x1 + 3·x2 + 5·x3 = 3

 

Vorgehensweise und Lösung:

 

Nach einer Festlegung des Grades des LGS auf 3, der Eingabe folgender Koeffizientenwerte in die Tabelle Koeffizienten:

 

-3   -1    -4

3     3      2

4     3      5
 

und der Eingabe nachfolgend aufgeführter Koeffizientenwerte in die Tabelle Absolutglieder:

4

0

3

 

ermittelt das Programm nach einer Bedienung der Schaltfläche Berechnen die reellen Lösungen des LGS mit:

 

x1 = -8,25

x2 = 5,75

x3 = 3,75

Die Lösungsmenge dieses LGS lautet somit L = {(-8,25|5,75|3,75)}
 

Weitere Screenshots zu diesem Modul

 

MathProf - Lineares Gleichungssystem - Lineare Gleichungsysteme - LGS - Matrix - Gauß - Lösen - Rechner - Determinante - Homogen - Koeffizienten - Lösungen - Beispiel - LGS lösen - Gleichungssysteme lösen - Homogenes Gleichungssystem - Inhomogenes Gleichungssystem - Gleichungssysteme - Gauß-Jordan-Verfahren

MathProf - Lineares Gleichungssystem - Lineare Gleichungsysteme - LGS - Berechnen - Bestimmen - Rang - Unendlich - Matrix - Parameter - Rechner - Unbekannte - Beispiel - LGS lösen - Gleichungssysteme lösen - Homogenes Gleichungssystem - Inhomogenes Gleichungssystem - Gleichungssysteme - Gauß-Jordan-Verfahren

MathProf - Gleichungssystem - Gleichungsysteme - LGS - Gauß - Koeffizienten - Determinante - Unendlich - Matrix - Parameter - Rechner - Unbekannte - Beispiel - LGS lösen - Gleichungssysteme lösen - Homogenes Gleichungssystem - Inhomogenes Gleichungssystem - Gauß-Jordan-Verfahren

  

Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Kurzinfos zum Themengebiet Analysis Kurzinfos zum Themengebiet Geometrie Kurzinfos zum Themengebiet Trigonometrie Kurzinfos zum Themengebiet Algebra Kurzinfos zum Themengebiet 3D-Mathematik Kurzinfos zum Themengebiet Stochastik Kurzinfos zum Themengebiet Vektoralgebra sowie unter Kurzinfos zu sonstigen Themengebieten.
 
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Lineares Gleichungssystem zu finden. 

 
Implementierte Module zum Themenbereich Algebra


Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL-Gleichungssystem - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte
 

Weitere Produkte
  
Nachfolgend aufgeführt finden Sie Kurzinfos zu weiteren von uns entwickelten Produkten.

PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einfussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik


Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit von Einflussgrößen bei der Ausgabe grafischer Darstellungen, besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 
Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1

Zur Inhaltsseite