MathProf - Aussagenlogik

MathProf 5.0 - Mathematik interaktiv

 

  Aussagenlogik

 

Unter dem Menüpunkt [Sonstiges] - Aussagenlogik können Operationen mit Aussagefunktionen ausgewertet werden.

 

MathProf - Aussagenlogik


Eine mathematische Aussage ist entweder wahr, oder falsch. Sie kann nur eine dieser Eigenschaften besitzen. Ausgedrückt wird dies durch die Benutzung der boolschen Wahrheitswerte Wahr (1) oder Falsch (0).

Durch die Verwendung von Operatoren und Operationen mit Aussagen, die als Aussagefunktionen bezeichnet werden, können kombinierte Aussagen daraufhin überprüft werden, ob sie wahr oder falsch sind.

Verknüpfte Aussagen werden u.a. in den Bereichen der Begründung mathematischer Beweistechniken, der Mengentheorie, sowie in der Schaltalgebra benötigt.

Zusammenhänge


Zur Definition von Aussagefunktionen stehen die folgenden 8 Funktionen zur Verfügung:

Aussagefunktion

Operator

 
AND (Konjunktion,und) + wahr, wenn beide Aussagen zugleich wahr sind
OR (Disjunktion,oder) * wahr, wenn eine der beiden Aussagen wahr ist
XOR (Entweder oder) # wahr, wenn entweder die eine oder die andere Aussage wahr ist
Implikation (Wenn ... so) > nur falsch, wenn aus einer wahren Aussage eine falsche geschlussfolgert werden soll
NOR / falsch, wenn beide Aussagen wahr sind
NAND \ wahr, wenn beide Aussagen falsch sind
Äquivalenz (genau dann, wenn) = wahr, wenn beide Aussagen den gleichen Wahrheitswert besitzen
Negation (NOT,nicht) - wahr, wenn Ausgangsaussage falsch ist


Nachfolgend wird die Tabelle der Wahrheitswerte gezeigt, die sich bei Verwendung der Aussagen A und B ergeben. Es sind hierbei genau 4 Kombinationen möglich.

Aussage                                                                      Operation

A B   A+B A*B A#B A>B A=B A/B A\B
0 0   0 0 0 1 1 1 1
0 1   0 1 1 1 0 0 1
1 0   0 1 1 0 0 0 1
1 1   1 1 0 1 1 0 0

 

Berechnung


Mit Hilfe der 8 zur Verfügung stehenden Funktionen können Sie in diesem Programmteil bis zu 5 Aussagen kombinieren. Eine kombinierte Aussage ist eine Funktion der Ausgangsaussagen H = F(A,B,C,D,E).

Nach der Definition einer Aussagefunktion im dafür vorgesehenen Eingabefeld und einer Bedienung der Schaltfläche Berechnen werden alle möglichen Belegungen der verwendeten Aussagen mit 0 (falsch), oder 1 (wahr) tabellarisch aufgelistet und die entsprechenden Wahrheitswerte im Tabellenfeld F (Ergebnis) ausgegeben. Außerdem ermittelt das Programm die konjunktive und die disjunktive Normalform des logischen Terms und gibt diese aus.

Kann eine Aussagefunktion aufgrund eines Definitionsfehlers nicht ausgewertet werden, so erhalten Sie eine entsprechende Fehlermeldung.

Beachten Sie:

Bei der Definition einer Negation ist der Ausdruck in Klammern zu setzen. Der Ausdruck A+-B beispielsweise kann nicht ausgewertet werden. Er müsste wie folgt deklariert sein: A+(-B)

 

Um definierte Terme zu speichern, oder bereits gespeicherte Terme zu holen, verwenden Sie den Menüeintrag Terme - Terme speichern bzw. Terme - Terme holen.
 

Beispiele

Beispiel 1:

Die Aussagen A und B sollen UND-verknüpft werden. Nach der Definition der Verknüpfungen im Eingabefeld mit der Zeichenfolge A+B werden nach einer Bedienung der Schaltfläche Berechnen folgende Ergebnisse ausgegeben.

A B F
     
1 1 1
0 1 0
1 0 0
0 0 0

Hieraus ist zu entnehmen:

Die Aussagenoperation A+B liefert nur das Ergebnis wahr, wenn die beiden Aussagen A und B zugleich wahr sind.

Für die disjunktive Normalform gibt das Programm den Term (A+B) aus. Die konjunktive Normalform des Ausdrucks lautet: (A* (B))+((-A)*B)+(A*B)

Beispiel 2:

Nach der Definition der aussagenlogischen Verbindung A*(B+C)=A im Eingabefeld und einer Bedienung der Schaltfläche Berechnen wird folgende Wahrheitswertetabelle ausgegeben:

A B C F
       
1 1 1 1
0 1 1 0
1 0 1 1
0 0 1 1
1 1 0 1
0 1 0 1
1 0 0 1
0 0 0 1


Hieraus ist zu entnehmen:

Die Aussagenoperation A*(B+C)=A liefert nur das Ergebnis falsch, wenn Aussage A falsch ist, B und C zugleich wahr sind.

Für die disjunktive Normalform gibt das Programm den Term (A+B+C)*(A+(-B)+C)*((-A)+(-B)+C)*(A+B+(-C))*((-A)+B+(-C))*(A+(-B)+(-C))*((-A)+(-B)+(-C)) aus. Die konjunktive Normalform des Ausdrucks lautet: (A*(-B)*(-C))
 

Module zum Themenbereich Sonstiges


Zahlenstrahl - Römische Zahlen - Schriftliche Addition - Schriftliche Subtraktion - Schriftliche Multiplikation - Schriftliche Division - Schriftliche Potenzierung - Aussagenlogik - Zahltypumwandlung - Zinsrechnung - Zinseszinsrechnung grafisch - Annuitätentilgung - Jahreszinsrechnung - Physikalische Größen - Materialkonstanten - Fachbegriffe Deutsch - Englisch - Mandelbrot- und Juliamengen - Zusammenhänge Mandelbrot-Juliamengen - Sierpinski-Dreieck - Koch-Kurve - Pythagoras-Baum - Feigenbaum-Diagramm - Lindenmeyer-System - Lindenmeyer-System II - Logistische Gleichung I - Logistische Gleichung II - Diagramme - Tortendiagramm - Kryptografie - Raumgittermodelle (3D) - Paare geordnet - Kalender - Rechnen mit selbstdefinierten Formeln - Zeichenprogramm - Tangram - Tetris - Spiel 15 - Türme von Hanoi - Dame - Schach


Zur Inhaltsseite