MathProf - Kleinstes gemeinsames Vielfaches - Teiler - ggT - kgV

MathProf - Mathematik-Software - kgV | ggT | Teiler | Faktor | Vielfaches | Produkt | Rest

Fachthemen: Zahlen - kgV - ggT - Teiler

MathProf - Algebra - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - kgV | ggT | Teiler | Faktor | Vielfaches | Produkt | Rest

Online-Hilfe
für das Modul zur Durchführung verschiedener Untersuchungen mit natürlichen Zahlen.

Dieses Unterprogramm ermöglicht unter Anwendung des Euklidischen Algorithmus das Berechnen des ggT (größter gemeinsamer Teiler). Zudem erfolgt die Berechnung des kgV (kleinstes gemeinsames Vielfaches), der Teiler, der Teilersumme, der Summe, des Produkts und des Quotienten zweier natürlicher Zahlen.

Der
implementierte Rechner ermöglicht auch die Durchführung der Analyse der Teilbarkeit und der Teilerfremdheit natürlicher Zahlen sowie die Ermittlung der Teileranzahl.
 
Beispiele, welche Aufschluss über die Verwendbarkeit
und Funktionalität
dieses Programmmoduls geben, sind eingebunden.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

ggT - kgV - Ganze Zahlen - Zahl - Natürliche Zahlen - Analysieren - Teilbarkeit - Zerlegung in Faktoren - Zahlen zerlegen - Zahlzerlegung - Echte Teilersumme - Teiler - Teilermenge - Ganzzahlig - Ganzzahlige Werte - Ganzzahlige Division - Ganzzahldivision - Ganzzahlig dividieren - Teilerzahl - Teilermengen - Teilersumme - Teilerfremd - Gemeinsamer Teiler - ggT bestimmen - kgV bestimmen - ggT ermitteln - kgV ermitteln - kgV und ggT - kgV zweier Zahlen - ggT zweier Zahlen - Gerade Zahlen - Ungerade Zahlen - Vielfache berechnen - Vielfache und Teiler - Vielfaches einer Zahl - Addieren - Addition - Teilen - Multiplizieren - Multiplikation - Quotient - Produkt - Summe - Rest - Größte gemeinsame Teiler - Gemeinsame Vielfache - Kleinste gemeinsame Vielfache - Kleinstes gemeinsames Vielfaches - Euklidischer Algorithmus - Zerlegung von Zahlen - Zahlzerlegungen - Teiler und Vielfache - Rechner für ggT und kgV - Teilerfremde Zahlen - Untersuchen - Untersuchung - Rechner - Bestimmen - Bestimmung - Berechnung - Tabelle - Liste - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 30 - 40 - 50 - 60 - 70 - 80 - 90 - 100 - 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - Werte - Beispiel - Beispielaufgaben - Berechnen - Teilbarkeit - Teilbarkeitsregeln - Teilbar durch - Teilbar durch 3 - Teilbar durch 4 - Teilbar durch 5 - Teilbar durch 6 - Teilbar durch 7 - Teilbar durch 8 - Teilbar durch 9 - Teiler von 12 - Teiler von 24 - Teiler von 30 - Teiler von 32 - Teiler von 36 - Teiler von 60 - Echte Teiler - Ganzzahliger Teiler - Dreistellige Zahl - Vierstellige Zahl - Fünfstellige Zahl - Sechsstellige Zahl - Teiler bestimmen - Teilermenge bestimmen - Produkt zweier Zahlen

  
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
  

Zahluntersuchung


MathProf - Gerade Zahlen - Ungerade Zahlen - Vielfache berechnen - Vielfache und Teiler - Vielfaches einer Zahl - Komplementärteiler - Addieren - Addition - Teilen - Multiplizieren - Multiplikation - Quotient - Produkt - Summe - Rest - Größte gemeinsame Teiler - Gemeinsame Vielfache - Kleinste gemeinsame Vielfache - Kleinstes gemeinsames Vielfaches - Teiler bestimmen - Teilermenge bestimmen - Produkt zweier Zahlen - Liste - Tabelle - Teiler und Vielfache - ggT - kgV - Teilerfremde Zahlen - Rechner - Berechnen - Untersuchen - Untersuchung - Ganze Zahlen - Zerlegung von Zahlen - Zahlzerlegungen - Liste - Tabelle - Beispiel - Zerlegung in Faktoren - Zahlen zerlegen - Zahlzerlegung - Bestimmen - Bestimmung - Berechnung
Modul Zahluntersuchung


 
Das Unterprogramm [Algebra] - Zahluntersuchung bietet die Möglichkeit, verschiedene Untersuchungen mit natürlichen Zahlen durchzuführen.

 

Zahluntersuchung I

 

MathProf - Ganzzahlige Teiler - Ganze Zahlen - Summe - Rest - Quotient - ggt - kgV - Produkt  - Teilersumme - Teilermenge - Teilbarkeit - Echtteilersumme - Teiler - Ganzzahlig - Ganzzahlige Werte - Ganzzahlige Division - Ganzzahldivision - Ganzzahlig dividieren - Teilerzahl - Teilermengen - Teilersumme - Teilerfremd - Gemeinsamer Teiler - Liste - Tabelle - Beispiel - Rechner - Berechnen

 

Die Wahl des Registerblatts Zahluntersuchung I ermöglicht die Untersuchung zweier natürlicher Zahlen A und B bezüglich:
 

  • ganzzahliger Teiler der Zahlen A und B
  • der Anzahl ganzzahliger Teiler der Zahlen A und B
  • der Summe der Zahlen A und B
  • des ggT (größten gemeinsamen Teilers der Zahlen A und B)
  • des kgV (kleinsten gemeinsamen Vielfachen der Zahlen A und B)
  • des Quotienten der Zahlen A und B
  • ganzzahligen Rests bei Division der Zahlen A und B
  • des Produkts der Zahlen A und B

Geben Sie die zu untersuchenden Zahlen in die Felder mit den Bezeichnungen Zahl A und Zahl B ein und bedienen Sie hierauf die Schaltfläche Berechnen.

 

Die Teiler (Komplementärteiler) der Zahlen werden in Tabellen aufgelistet. Alle anderen Berechnungsergebnisse werden in entsprechenden Anzeigefeldern ausgegeben.

 

Zahluntersuchung II

 

MathProf - Zahlen - Zerlegung - Faktoren - Teilbarkeit - Teilbar - Primzahl - Teilermenge - Zerlegung von Zahlen - Zahlzerlegungen - Liste - Tabelle - Beispiel - Rechner - Berechnen - Zerlegung in Faktoren - Zahlen zerlegen - Zahlzerlegung

 

Eine Primzahl ist eine natürliche Zahl, welche genau zwei natürliche Teiler besitzt. Dies sind die Zahl 1 und die Zahl selbst. Die Zahl 1 ist per Definition keine Primzahl. Die einzige Zahl, welche eine gerade Primzahl ist, ist die Zahl 2.

 

Ungerade Zahlen können, sofern diese selbst keine Primzahlen sind, in Faktoren zerlegt werden, die Primzahlen sind.

 

Eine derartige Partitionierung natürlicher Zahlen können Sie bei Wahl des Registerblatts Zahluntersuchung II durchführen lassen.

 

Wird der Kontrollschalter Alle Zahlen aktiviert, so werden alle Zahlen innerhalb des festgelegten Bereichs untersucht. Ist eine Zahl eine Primzahl, so wird dies ausgegeben, andernfalls wird die entsprechende Zahl in ihre Primfaktoren zerlegt. Soll die Untersuchung nur mit natürlichen Zahlen durchgeführt werden, die durch 3, 5 oder 7 teilbar sind, so aktivieren Sie den entsprechenden Kontrollschalter Durch 3 teilbar, Durch 5 teilbar bzw. Durch 7 teilbar.

 

Legen Sie den Zahlenwertebereich, innerhalb dessen die Zerlegungen durchgeführt werden sollen, durch die Eingabe zweier ganzzahliger Werte in die entsprechenden Felder Von und bis fest und bedienen Sie die Schaltfläche Berechnen. Die Ergebnisse werden in der Tabelle ausgegeben.

 

Zahluntersuchung III

 

MathProf - Teilersumme - Teileranzahl - Echtteilersumme - Teiler - Zahl - Teilermenge - Teilbarkeit - Tabelle - Liste - Beispiel - Rechner - Berechnen

 

Bei einer Wahl des Registerblatts Zahluntersuchung III ermöglicht dieses Modul die Untersuchung natürlicher Zahlen auf folgende Eigenschaften:
 

  • Anzahl derer Teiler

  • Teilersumme

  • Echtteilersumme (Teilersumme)

  • Teiler

Unter der Teilersumme einer natürlichen Zahl versteht man die Summe aller Teiler dieser Zahl, einschließlich derer selbst. Die Echtteilersumme der natürlichen Zahl n ist die Summe der Teiler der Zahl n, ohne diese selbst.

 

Das Programm untersucht hierbei alle Zahlen innerhalb des Bereichs, der durch die Eingabe von Zahlenwerten in die Felder Von und bis festgelegt wurde.

 

Wird in das Feld Teileranzahl >= ein ganzzahliger Wert > 2 eingegeben, so werden die Ergebnisse ausschließlich für Zahlen ermittelt, die eine Anzahl natürlicher Teiler größer dem angegebenen Wert besitzen. Bedienen Sie die Schaltfläche Berechnen, so werden die Ergebnisse in der Tabelle ausgegeben.

 

Zahluntersuchung IV

 

MathProf - Teilerfremde Zahlen - Teilerfremdheit - Teilerfremd - Tabelle - Liste - Beispiel - Rechner - Berechnen

 

Bei einer Wahl des Registerblatts Zahluntersuchung IV können natürliche Zahlen auf ihre Teilerfremdheit untersucht werden.

 

Teilerfremd (relativ prim) zu einer Zahl A ist eine Zahl, die keinen gemeinsamen Teiler (außer der Zahl 1) mit dieser besitzt. Teilerfremde Zahlen sind zudem dadurch charakterisiert, dass deren größter gemeinsamer Teiler die Zahl 1 ist.

 

Beispiel:

Die Zahl 9 ist teilerfremd zu 10, denn sie besitzt die Teiler 1, 3, 9. Die Zahl 10 hingegen besitzt ausschließlich die Teiler 1, 2, 5 und 10. Somit haben 9 und 10 die Zahl 1 als größten gemeinsamen Teiler. Die Zahl 8 ist nicht teilerfremd zu 10, denn die Zahlen 8 und 10 besitzen den gemeinsamen Teiler 2.

 

Sollen natürliche Zahlen auf ihre Teilerfremdheit zu einer Zahl A untersucht werden, so aktivieren Sie das Kontrollkästchen Teilerfremd zu A. Sollen sie hingegen auf die Teilerfremdheit zu zwei Zahlen A und B untersucht werden, so aktivieren Sie die beiden Kontrollkästchen Teilerfremd zu A sowie Teilerfremd zu B. Den Bereich innerhalb dessen untersucht werden soll, legen Sie durch die Eingabe entsprechender ganzzahliger Werte in die Felder mit den Bezeichnungen Von und Bis fest.

 

Nach einer Bedienung der Schaltfläche Berechnen wird die Menge aller zur Zahl A bzw. Zahl B teilerfremden Zahlen für den festgelegten Untersuchungsbereich in der Tabelle ausgegeben.

 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Beispiele


Beispiel 1:

Wurde das Registerblatt Zahluntersuchung I gewählt und lassen Sie die Zahlen 12 und 117 untersuchen, so erhalten Sie nach einem Klick auf die Schaltfläche Berechnen folgende Ergebnisse:

Teiler der 1. Zahl: 1 ; 2 ; 3 ; 4 ; 6 ; 12

Teiler der 2. Zahl: 1 ; 3 ; 9 ; 13 ; 39 ; 117

 

Zahl 1 hat 6 Teiler

Zahl 2 hat 6 Teiler

 

Summe A+B: 129

ggT: 3

kgV: 468

Quotient B/A: 0,1025641

Rest von B/A: 9

Produkt A·B: 1404

 

Beispiel 2:

 

Lassen Sie die Zerlegung von Zahlen innerhalb des Bereichs zwischen 50 und 55 nach einer Wahl des Registerblatts Zahluntersuchung II durchführen, so gibt das Programm nach einer Aktivierung des Kontrollschalters Alle Zahlen und einem Klick auf die Schaltfläche Berechnen folgende Resultate aus:

 

50 = 2·5·5

51 = 3·17

52 = 2·2·13

53 = Primzahl

54 = 2·3·3·3

55 = 5·11

 

Beispiel 3:

 

Wählen Sie das Registerblatt Zahluntersuchung III und lassen Sie sich alle Zahlen zwischen 100 und 200 ausgeben deren Teileranzahl ³ 17 ist. Nach Eingabe der relevanten Zahlenwerte in die dafür vorgesehenen Felder und einer Bedienung der Schaltfläche Berechnen erhalten Sie folgende Ergebnisse:

 

Nur die Zahl 180 besitzt mehr als 17 Teiler. Diese sind:

 

1 ; 2; 3; 4; 5; 6; 9; 10; 12; 15; 18; 20; 30; 36; 45; 60; 90; 180

 

Die Summe dieser Teiler beträgt 546 und die Echtteilersumme besitzt den Wert 365.

 

Beispiel 4:

 

Als zu A = 5 und B = 3 teilerfremde Zahlen im Bereich von 10 bis 20 ermittelt das Programm nach der Wahl des Registerblatts Zahluntersuchung IV, der Eingabe der relevanten Zahlenwerte, der Aktivierung der beiden Kontrollkästchen Teilerfremd zu A sowie Teilerfremd zu B und einer Bedienung der Schaltfläche Berechnen die Zahlen:

 

11; 13; 14; 16; 17 und 19
 

Weitere Screenshots zu diesem Modul

 

MathProf - Gerade Zahlen - Ungerade Zahlen - Vielfache berechnen - Vielfache und Teiler - Vielfaches einer Zahl - Komplementärteiler - Addieren - Addition - Teilen - Multiplizieren - Multiplikation - Quotient - Produkt - Summe - Rest - Größte gemeinsame Teiler - Gemeinsame Vielfache - Kleinste gemeinsame Vielfache - Kleinstes gemeinsames Vielfaches - Teiler bestimmen - Teilermenge bestimmen - Produkt zweier Zahlen - Liste - Tabelle - Teiler und Vielfache - ggT - kgV - Teilerfremde Zahlen - Rechner - Berechnen - Untersuchen - Untersuchung
Beispiel 1

MathProf - Ganze Zahlen - Zerlegung von Zahlen - Zahlzerlegungen - Liste - Tabelle - Beispiel - Berechnen - Zerlegung in Faktoren - Zahlen zerlegen - Zahlzerlegung - Rechner - Bestimmen - Bestimmung - Berechnung - Tabelle - Liste - Beispiel - Berechnen
Beispiel 2

MathProf - Teiler - Zahlen - Zerlegung in Faktoren - Zahlen zerlegen - Zahlzerlegung - Echtteilersumme - Ganzzahlig - Teiler bestimmen - Teilermenge bestimmen - Berechnung - Tabelle - Liste - Beispiel - Berechnen - Rechner   
Beispiel 3
 

Teilbarkeitsregeln - Teilbarkeit

 

  • Eine Zahl ist ausschließlich dann durch 2 teilbar, wenn sie gerade ist. Deren letzte Ziffer ist stets eine 0, eine 2, eine 4, eine 6 oder eine 8
  • Eine Zahl ist ausschließlich dann durch 3 teilbar, wenn deren Quersumme durch 3 teilbar ist
  • Eine Zahl ist ausschließlich dann durch 4 teilbar, wenn die Zahl aus den letzten beiden Ziffern durch 4 teilbar ist, oder aber beide Ziffern eine Null sind
  • Eine Zahl ist ausschließlich dann durch 5 teilbar, wenn deren letzte Ziffer eine 0 oder eine 5 ist
  • Eine Zahl ist ausschließlich dann durch 6 teilbar, wenn sie durch 2 und durch 3 teilbar ist
  • Eine Zahl ist ausschließlich dann durch 7 teilbar, wenn ihre alternierende 3er-Quersumme durch 7 teilbar ist
  • Eine Zahl ist ausschließlich dann durch 8 teilbar, wenn diese aus den letzten drei Ziffern durch 8 teilbar ist , bzw. wenn die letzten drei Ziffern derer Nullen sind
  • Eine Zahl ist ausschließlich dann durch 9 teilbar, wenn ihre Quersumme durch 9 teilbar ist
  • Eine Zahl ist ausschließlich dann durch 10 teilbar, wenn deren letzte Ziffer eine Null ist

 

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter folgenden Adressen zu finden.

Wikipedia - Teilersumme
Wikipedia - ggT
Wikipedia - kgV

 
Weitere implementierte Module zum Themenbereich Algebra


Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL-Gleichungssystem - Mengenelemente - Venn-Diagramm - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte

 

Screenshots weiterer Module von MathProf


MathProf - Bruchrechnen - Bruchrechnung - Bruch - Brüche - Bruchrechner - Wandeln - Kürzen - Addieren - Subtrahieren - Multiplizieren - Dividieren - Addition - Subtraktion - Multiplikation - Division - Rechner - Berechnung - Kehrwert - Bruchzahlen - Umwandeln - Wandeln - Kürzen - Gemeinsamer Nenner - Gemeinsamer Teiler - Echter Bruch - Unechter Bruch
MathProf 5.0 - Unterprogramm Bruchrechnung



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0