MathProf - Mengenelemente - Mengenschreibweise - Schnittmenge - Mengenoperationen

MathProf - Mathematik-Software - Mengenlehre | Elemente | Symbole | Operatoren

Fachthema: Mengen

MathProf - Algebra - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Mengenlehre | Elemente | Symbole | Operatoren

Online-Hilfe
für das kleine Modul zur Durchführung von Mengenoperationen und zur Darstellung der Vereinigungsmenge bzw. Schnittmenge, Differenzmenge bzw. Teilmenge, Komplementärmenge und Durchschnittsmenge am Mengendiagramm.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Menge - Mengenlehre - Mengenalgebra - Schnittmengen - Mengenoperationen - Vereinigung - Schnitt - Leere Menge - Vereinigung von Mengen - Elemente - Mengenprodukt - Mengensystem - De Morgansche Regeln - Durchschnitt von Mengen - Darstellung von Mengen - Vereinigung - Differenz von Mengen - Schnitt von Mengen - Mathematik der Mengen - Mengenschreibweise - Grundmenge - Rechner - Berechnen - Durchschnitt - Graph - Grafisch - Bild - Symbole - Mengensymbole - Schreibweise - Mengenzeichen - Zeichen - Partitionen - Produktmenge - Mengenoperator - Plotter - Grafik - Darstellen - Plotten - Rechengesetze - Rechenregeln - Rechnen mit Mengen - Mengenvereinigung - Vereinigungsmenge - Mengen und Abbildungen - Teilmenge - Darstellen - Abzählbare Mengen - Rechenregeln - Komplement - Komplementäre Menge - Inverse Menge - Durchschnittsmenge - Untermenge - Obermenge - Differenzmenge - Komplementärmenge - Komplement einer Menge

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
    

Mengen und Mengenelemente


Im Unterprogramm [Algebra] - [Mengen] - Mengenelemente können Untersuchungen zum Fachthemengebiet Mengenlehre durchgeführt werden.

 

MathProf - Vereinigungsmenge - Differenzmenge - Mengenoperationen - Durchschnittsmenge - Mengenlehre - Mengen - Mengenalgebra - Schnittmenge


In diesem Programmmodul zur Mengenlehre werden von einer Gesamtmenge ermittelt:
 

  • Vereinigungsmenge

  • Differenzmengen

  • Komplementmengen

  • Durchschnittsmengen

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Bedienung

 

MathProf - Mengenlehre - Mengen - Rechenregeln - Schnittmenge - Teilmenge - Differenzmenge

 

Wählen Sie durch die Aktivierung des Kontrollschalters Zwei Mengen bzw. Drei Mengen, ob Sie Untersuchungen mit zwei, oder drei Mengen durchführen möchten. Löschen Sie ggf. zuvor eingebundene Elemente durch die Benutzung der Schaltfläche Löschen.

 

Definieren Sie Mengenelemente durch einen Klick mit der linken Maustaste in die kreisförmig dargestellten Mengensymbole. Das Programm stellt diese in Form von Punkten dar und ermittelt hierauf unmittelbar die Ergebnisse für Differenzmengen, Komplementmengen sowie Durchschnittsmengen.
 

Zusammenhänge bzgl. der Mengenlehre/Mengenalgebra - Mengenschreibweise

 

Durchschnittsmenge:
Die Durchschnittsmenge (Schnittmenge) umfasst alle Elemente,
die sowohl in Menge A, wie auch in Menge B enthalten sind.

AB = {x | x A und x B}

 

MathProf - Durchschnittsmenge - Venn-Diagramm - Mengenlehre

Vereinigungsmenge:
Die Vereinigungsmenge ist diejenige Menge, deren Elemente entweder in Menge A, oder in Menge B, oder in beiden Mengen enthalten sind.
A
B = {x | x A oder x B}

 

MathProf - Vereinigungsmenge - Venn-Diagramm - Mengenlehre

Differenzmenge:
Die Differenzmenge umfasst alle Elemente, die zu einer
Menge A gehören, jedoch nicht zu einer Menge B.

A \ B = {x | x A und x B}

MathProf - Differenzmenge - Venn-Diagramm - Mengenlehre

 

Symmetrische Differenz:

Menge aller Elemente, die entweder in Menge A oder in Menge B, aber nicht in beiden Mengen enthalten sind.

A Δ B = (A \ B) (B \ A)

 

MathProf - Symmetrische Differenz - Venn-Diagramm - Mengenlehre

Komplementmenge:

Die Komplementmenge (Komplementärmenge) zu A umfasst alle Elemente, die nicht zu einer Menge A gehören.

¬A = {x | x A}

 

MathProf - Komplementmenge - Venn-Diagramm - Mengenlehre

 

 

Gesetzmäßigkeiten - Rechenregeln - De Morgansche Regeln

 

Identitätsgesetz:

 

A A = A

A A = A

 

Die Mengenoperationen Durchschnitt und Vereinigung sind kommutativ, assoziativ und zueinander distributiv. Für sie gilt (De Morgansche Regeln bzw. Rechenregeln):

 

 (A B) C = A (B C)

 (A B) C = A (B C)

 

A B = B A

A B = B A

A ∩ (B C) = (A B) (A C)

 

C (A B) = C A C B

C (A B) = C A C B

 

Für die Differenzmengenbildung gilt:

 

(A \ B) \ C  = A \ (B C)

A \ (B \ C)  = (A \ B) (A C)

(A B) \ C = (A \ C) (B \ C)

(A B) \ C = (A \ C) (B \ C)

A \ (B C)  = (A \ B) (A \ C)

A \ (B C)  = (A \ B) (A \ C)

 

Für die symmetrische Differenz gilt:

 

(A Δ B) Δ C = A Δ (B Δ C)

A Δ B = B Δ A

(A Δ B) C = (A C) Δ (B C)

A Δ ∅ = A

A Δ A = ∅

 

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben.

 

Weitere Themenbereiche

 

Venn-Diagramm

 

Beispiel

 

MathProf - Schnittmenge - Menge - Teilmenge - Komplement - Durchschnittsmengen - Mengenlehre - Mengenalgebra - Schnittmenge

 

Nach einer Aktivierung des Kontrollschalters Drei Mengen und der Ausführung von acht Klicks in die kreisförmig dargestellten Mengensymbole, gemäß oben gezeigtem Muster, gibt das Programm aus:

 

Alle zur Menge A (gelb) gehörenden Elemente: Menge A = {A,B,C,E,H}

Alle zur Menge B (grau) gehörenden Elemente: Menge B = {B,C,G}

Alle zur Menge C (rot) gehörenden Elemente: Menge C = {C,D,F,H}

 

Vereinigungsmenge: {A,B,C,D,E,F,G,H}

(Menge deren Elemente entweder in Menge A, oder in Menge B, oder in beiden Mengen enthalten sind)

 

Differenzmenge: A = {A,E}

(Menge aller Elemente, welche zu Menge A gehören, jedoch nicht zu Menge B und nicht zu Menge C)

 

Differenzmenge: B = {G}

(Menge aller Elemente, welche zu Menge B gehören, jedoch nicht zu Menge A und nicht zu Menge C)

 

Differenzmenge: C = {D,F}

(Menge aller Elemente, welche zu Menge C gehören, jedoch nicht zu Menge A und nicht zu Menge B)

 

Komplementmenge: A = {D,F,G}

(Menge aller Elemente, welche nicht zu Menge A gehören)

 

Komplementmenge: B = {A,D,E,F,H}

(Menge aller Elemente, welche nicht zu Menge B gehören)

 

Komplementmenge: C = {A,B,E,G}

(Menge aller Elemente, welche nicht zu Menge C gehören)

 

Durchschnittsmenge: AB = {B,C}

(Menge aller Elemente, die sowohl in Menge A, wie auch in Menge B enthalten sind)

 

Durchschnittsmenge: BC = {C}

(Menge aller Elemente, die sowohl in Menge B, wie auch in Menge C enthalten sind)

 

Durchschnittsmenge: AC = {C,H}

(Menge aller Elemente, die sowohl in Menge A, wie auch in Menge C enthalten sind)
 

Weitere Screenshots zu diesem Modul

 

MathProf - Mengenelemente - Mengenlehre - Vereinigungsmengen - Leere Menge - Schnittmengen - Differenzmengen - Teilmengen - Komplementmengen - Durchschnittsmengen - Beispiel - Mengenalgebra - Schnittmenge
MathProf - Mengendiagramm - Vereinigungsmenge - Schnittmenge - Differenzmenge - Teilmenge -  Komplementmenge - Durchschnittsmenge - Mengenoperationen - Beispiel - Mengenalgebra
MathProf - Mengenelemente - Mengendiagramm - Differenz - Komplement - Durchschnitt - Vereinigung - Definition - Darstellen - Mengensymbole - Mengenberechnung - Beispiel - Mengenalgebra - Schnittmenge

   

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
 
Implementierte Module zum Themenbereich Algebra


Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL-Gleichungssystem - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte
 

Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
MathProf 5.0
Mathematik interaktiv

 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 
 
 
  
PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 
Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 
 

 
SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0
 
Videos zu einigen mit diesem Programm erzeugten Animationen finden Sie unter Videos, oder einen Klick auf die nachfolgend dargestellte Schaltfläche ausführen.
 
Zu den Videos zu SimPlot 1.0

Zur Inhaltsseite