MathProf - Ganzrationale Funktionen (Polynome)

Science for all - Maths for you

 

MathProf 5.0 - Mathematik interaktiv

 

Ganzrationale Funktionen (Polynome)

 

Mit Hilfe des Unterprogramms [Analysis] - [Ganz- und gebrochenrationale Funktionen] - Ganzrationale Funktionen können ganzrationale Funktionen (Polynome) untersucht und dargestellt werden.

 

MathProf - Ganzrationale - Kurve


Analysen können mit zwei Polynomen A(x) und B(x) folgender Formen durchgeführt werden:

A(x) = anxn + an-1xn-1 +  ... + a (mit 0 n 100)

B(x) = bnxn + bn-1xn-1 +  ... + b0    (mit 0 n 100)


Hierbei werden u.a. ermittelt:

  • Summe A(x)+B(x) der Polynome
  • Differenz A(x)-B(x) der Polynome
  • Differenz B(x)-A(x) der Polynome
  • Produkt B(x)·A(x) der Polynome
  • Ganzrationales Polynom nach Bildung des Quotienten der Polynome A(x)/B(x)
  • Restpolynom nach Bildung des Quotienten der Polynome A(x)/B(x)
  • ggT (größter gemeinsamer Teiler) der Polynome A(x) und B(x)
  • kgV (kleinstes gemeinsames Vielfaches) der Polynome A(x) und B(x)

Ausgegeben wird ebenfalls:

  • Resultat nach Durchführung einer Substitution A(B(x)) der Polynome A(x) und B(x)

Zudem werden ermittelt:

  • 1. Ableitung des Polynoms A(x)

  • 1. Ableitung des Polynoms B(x)

  • 2. Ableitung des Polynoms A(x)

  • 2. Ableitung des Polynoms B(x)

  • Stammfunktion des Polynoms A(x)

  • Stammfunktion des Polynoms B(x)

Das Programm versucht auch alle auffindbaren reellen und komplexen Nullstellen des entsprechenden Polynoms im Bereich -∞ x ∞ zu ermitteln - unabhängig vom gewählten Untersuchungsbereich zur Durchführung einer Kurvendiskussion. Nullstellen können u. U. doppelt verhanden sein. Dies beruht auf der Tatsache, dass versucht wird alle zur Faktordarstellung des Polynoms erforderlichen Nullstellen numerisch zu ermitteln. Komplexe Nullstellen besitzen einen Imaginärteil, für welchen die Bezeichnung i verwendet wird.

 

Hinweise:

Die Koeffizienten an bzw. bn der Polynome können als reelle Zahlenwerte oder als einfache, ganzzahlige Brüche definiert werden.

 

Textausgaben wie Fehler bei Ermittlung ... oder Fehler bei Durchführung ... beruhen im Allgemeinen darauf, dass die entsprechende Funktion aufgrund mathematischer Sachverhalte nicht ermittelt werden kann (es existieren keine Lösungen) und nicht auf Fehlern in verwendeten Algorithmen oder fehlerhaft durchgeführten Termdefinitionen.

 

Berechnung und Darstellung


MathProf - Polynom - Ableitung

Untersuchen und darstellen lassen können Sie sich Polynome, wenn Sie wie nachfolgend geschildert vorgehen:

  1. Aktivieren Sie das Kontrollkästchen Polynom 1 (voreingestellt). Definieren Sie den Term einer ganzrationalen Funktion im dazugehörenden Eingabefeld A(x) =.

    Ist zugleich ein zweites Polynom zu untersuchen, so definieren Sie den entsprechenden Funktionsterm im Feld mit der Bezeichnung Polynom 2: B(x) = und aktivieren das zugehörige Kontrollkästchen Polynom 2.
     
  2. Legen Sie im Formularbereich Einstellungen für Kurvendiskussion, durch die Eingabe entsprechender Zahlenwerte, den Bereich fest, innerhalb dessen eine Funktionsanalyse zur Ermittlung von Extrema und Wendepunkten durchgeführt werden soll (Untersuchungsbereich von x1 = und bis x2 =). Voreingestellt ist ein Untersuchungsbereich -3 x 3. Nullstellen werden unabhängig vom eingestellten Untersuchungsbereich ermittelt.
     
  3. Durch die Aktivierung des Kontrollschalters Grob, Mittel, Fein oder Sehr fein legen Sie die zu verwendende Untersuchungsgenauigkeit zur Ermittlung von Extrema und Wendepunkten fest.
     
  4. Nach einer Bedienung der Schaltfläche Berechnen werden die Resultate, soweit vorhanden bzw. ermittelbar, ausgegeben.
     
  5. Klicken Sie auf die Schaltfläche Darstellen um sich die Zusammenhänge grafisch darstellen zu lassen.
     
  6. Wählen Sie durch die Aktivierung des entsprechenden Kontrollkästchens auf dem weiter unten abgebildeten Bedienformular die Kurve aus, die Sie sich darstellen lassen möchten. Zur Auswahl stehen:

    Polynom A(x): Polynom A(x)
    Polynom B(x): Polynom B(x)

    1. Ableitung von A(x): 1. Ableitung f'(x) von Polynom A(x)
    2. Ableitung von A(x): 2. Ableitung f''(x) von Polynom A(x)
    1. Ableitung von B(x): 1. Ableitung f'(x) von Polynom B(x)
    2. Ableitung von B(x): 2. Ableitung f''(x) von Polynom B(x)

    Summe A(x)+B(x): Summe A(x)+B(x) der Polynome
    Subtraktion A(x)-B(x):
    Differenz A(x)-B(x) der Polynome
    Subtraktion B(x)-A(x): Differenz B(x)-A(x) der Polynome
    Produkt A(x)·B(x): Produkt der Polynome A(x)·B(x)
    Quotient A(x)/B(x): Quotient der Polynome A(x)/B(x)
    Rest von A(x)/B(x): Restpolynom nach Division der Polynome A(x)/B(x)

    ggT von A(x) und B(x): Größter gemeinsamer Teiler der Polynome A(x) und B(x)
    kgV von A(x) und B(x): Kleinstes gemeinsames Vielfaches der Polynome A(x) und B(x)

    Substitution: Resultat nach Durchführung einer Substitution A(B(x)) der Polynome A(x) und B(x)
     
  7. Legen Sie durch die Aktivierung/Deaktivierung eines der Kontrollkästchen Nullstellen von A(x) bzw. B(x), Extrema von A(x) bzw. B(x) oder Wendep. von A(x) bzw. B(x) fest, ob eine Kurvendiskussion mit dem entsprechenden Polynom durchgeführt werden soll. Möchten Sie die den Untersuchungsbereich zur Durchführung einer Kurvendiskussion mit der Maus verändern, so klicken Sie in den rechteckig umrahmten Mausfangbereich einer Bereichsmarkierung und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach links oder nach rechts (je schmaler der Bereich gewählt wird, desto exakter sind die resultierenden Berechnungsergebnisse).
     
  8. Wurde eine Funktion deklariert, die das Einzelzeichen P zur Definition eines Funktionsparameters enthält, so definieren Sie den zu durchlaufenden Funktionsparameterwertebereich und die gewünschte Schrittweite durch die Bedienung des Schalters P und positionieren Sie den Schieberegler P, um den Einfluss des Parameters zu untersuchen.

    Um eine automatisch ablaufende Parameterwertsimulation durchführen zu lassen, klicken Sie auf die Schaltfläche Simulation. Beendet werden kann die Ausführung dieser wieder durch eine erneute Betätigung derselben Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

Die bei der Durchführung interaktiver Kurvendiskussionen verwendeten Bezeichnungskürzel haben folgende Bedeutung:
 

  • N - reelle Nullstellen

  • H/T - Extrema (Hoch- und Tiefpunkte)

  • W - Wendepunkte

Hinweis:

Der Parameter P kann in diesem Unterprogramm nur als einzelner Faktor, als Summand, oder als Zähler eines Bruchs verwendet werden. Eine Verwendung des Parametersymbols P in einer Form wie z.B. 1/P, 2*P, P/4 ist nicht zulässig und wird mit einer Fehlermeldung quittiert.

 

Bedienformulare


Wurde in den Eingabefeldern des Hauptformulars des Unterprogramms ein Term ohne Parameter P definiert, so wird ein den nachfolgend gezeigten Bildern ähnliches Bedienformular zur Verfügung gestellt, auf welchem Sie zusätzlich durch die Aktivierung der Kontrollkästchen entsprechende Einstellungen vornehmen können.

MathProf - Polynom - Nullstelle

MathProf - Polynom - ggT

Enthält der erstellte Term das Einzelzeichen P zur Definition eines Funktionsparameters, so wird bei der Ausgabe einer grafischen Darstellung das nachfolgend abgebildete Formular eingeblendet.

MathProf - Polynom - Nullstellen

MathProf - Ganzrationale - Quotient

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • Beschriftung: Markierung und Nummerierung der durch Kurvendiskussion ermittelten Punkte ein-/ausschalten
  • Koordinaten: Anzeige der Koordinaten der durch Kurvendiskussion ermittelten Punkte ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Ganzrationale Funktionen - Interaktiv

Mathematische Funktionen I

 

Beispiele


Beispiel 1 - Ein Polynom:

Gegeben sei das Polynom A(x) = -5/3·x4+1/5·x2+2. Dieses ist zu analysieren.
 

Vorgehensweise und Lösung:

 

Aktivieren Sie das Kontrollkästchen Polynom 1: A(x) = (Kontrollkästchen Polynom 2: B(x) = bleibt deaktiviert), geben Sie die Zeichenfolge -5/3*X^4+1/5*X^2+2 in das oben angeordnete Feld Polynom 1 ein und belassen Sie die Werte in den Eingabefeldern zur Kurvenuntersuchung auf den Vorgabeeinstellungen.

 

Nach einer Bedienung der Schaltfläche Berechnen gibt das Programm aus:


Definiertes Polynom A(x): f(x) = -5/3·X^4+1/5·X^2+2

------------------------------------------------------------------------------------


1. Ableitung von A(x): f'(x) = -6,667·X^3+0,4·X

------------------------------------------------------------------------------------


2. Ableitung von A(x): f''(x) = -20·X^2+0,4

------------------------------------------------------------------------------------


Stammfunktion von A(x): F(x) = -0,333·X^5+0,067·X^3+2·X+C

------------------------------------------------------------------------------------

 

Nullstellen von A(x):

Reelle Nullstellen:

N1 (-1,076 / 0)
N2 (1,076 / 0)

Komplexe Nullstellen:

N3 (0 / 1,018 i)
N4 (0 / -1,018 i)
 

------------------------------------------------------------------------------------


Extrema von A(x) im Bereich von x1 = -3 bis x2 = 3:

H1 (-0,245 / 2,006)
H2 (0,245 / 2,006)

T1 (0 / 2)

 

------------------------------------------------------------------------------------


Wendepunkte von A(x) im Bereich von x1 = -3 bis x2 = 3:

W1 (-0,141 / 2,003)
W2 (0,141 / 2,003)
 

Beispiel 2 - Zwei Polynome:

 

Die beiden Polynome A(x) = 4·x7+1/5·x3-1 und B(x) = 5/3·x4-2·x2+2 seien auf deren individuelle und gemeinsame Eigenschaften hin zu untersuchen.
 

Vorgehensweise und Lösung:

 

Aktivieren Sie die Kontrollkästchen Polynom 1: A(x) = sowie Polynom 2: B(x) =. Geben Sie die Zeichenfolge 4*X^7+1/5*X^3-1 in das oben angeordnete Feld Polynom 1 und die Zeichenfolge 5/3*X^4-2*X^2+2 im darunter angeordneten Feld Polynom 2 ein.

 

Belassen Sie die Werte in den Eingabefeldern zur Kurvenuntersuchung auf den Vorgabeeinstellungen, so gibt das Programm nach einer Bedienung der Schaltfläche Berechnen aus:


Definiertes Polynom A(x): f(x) = 4·X^7+1/5·X^3-1

------------------------------------------------------------------------------------


Definiertes Polynom B(x): f(x) = 5/3·X^4-2·X^2+2

------------------------------------------------------------------------------------


Summe A(x)+B(x): f(x) = 4·X^7+1,667·X^4+0,2·X^3-2·X^2+1

------------------------------------------------------------------------------------


Differenz A(x)-B(x): f(x) = 4·X^7-1,667·X^4+0,2·X^3+2·X^2-3

------------------------------------------------------------------------------------


Differenz B(x)-A(x): f(x) = -4·X^7+1,667·X^4-0,2·X^3-2·X^2+3

------------------------------------------------------------------------------------


Produkt A(x)·B(x):

 

f(x) = 6,667·X^11-8·X^9+8,333·X^7-0,4·X^5-1,667·X^4+0,4·X^3+2·X^2-2

------------------------------------------------------------------------------------

 

Quotient A(x)/B(x): f(x) = 2,4·X^3+2,88·X

------------------------------------------------------------------------------------


Rest von A(x)/B(x): f(x) = 1,16·X^3-5,76·X-1

------------------------------------------------------------------------------------


ggT von A(x) und B(x): f(x) = 1

------------------------------------------------------------------------------------


kgV von A(x) und B(x):

 

f(x) = 6,667·X^11-8·X^9+8,333·X^7-0,4·X^5-1,667·X^4+0,4·X^3+2·X^2-2

------------------------------------------------------------------------------------


Substitution A(B(x)):

 

f(x) = 142,89·X^28-1200,274·X^26+5521,262·X^24-17283,951·X^22+40617,284·X^20-74874,074·X^18+111184,198·X^16-134580,148·X^14+133421,963·X^12-107822·X^10+70194·X^8-35849,6·X^6+13747,467·X^4-3588,8·X^2+512,6

------------------------------------------------------------------------------------


1. Ableitung von A(x): f'(x) = 28·X^6+0,6·X^2

------------------------------------------------------------------------------------


2. Ableitung von A(x): f''(x) = 168·X^5+1,2·X

------------------------------------------------------------------------------------


Stammfunktion von A(x): F(x) = 0,5·X^8+0,05·X^4-1·X+C

------------------------------------------------------------------------------------


1. Ableitung von B(x): f'(x) = 6,667·X^3-4·X

------------------------------------------------------------------------------------


2. Ableitung von B(x): f''(x) = 20·X^2-4

------------------------------------------------------------------------------------


Stammfunktion von B(x): F(x) = 0,333·X^5-0,667·X^3+2·X+C

------------------------------------------------------------------------------------

 

Nullstellen von A(x):

Reelle Nullstellen:

N1 (0,807 / 0)

Komplexe Nullstellen:

N2 (-0,736 / -0,369 i)
N3 (-0,736 / 0,369 i)
N4 (-0,191 / 0,79 i)
N5 (-0,191 / -0,79 i)
N6 (0,523 / -0,647 i)
N7 (0,523 / 0,647 i)
 

------------------------------------------------------------------------------------


Nullstellen von B(x):

Komplexe Nullstellen:

N1 (-0,921 / 0,498 i)
N2 (-0,921 / -0,498 i)
N3 (0,921 / 0,498 i)
N4 (0,921 / -0,498 i)
 

------------------------------------------------------------------------------------


Extrema von A(x) im Bereich von x1 = -3 bis x2 = 3:

Keine Extrema gefunden
 

------------------------------------------------------------------------------------


Wendepunkte von A(x) im Bereich von x1 = -3 bis x2 = 3:

W1 (0 / -1)
 

------------------------------------------------------------------------------------


Extrema von B(x) im Bereich von x1 = -3 bis x2 = 3:

H1 (0 / 2)

T1 (-0,775 / 1,4)
T2 (0,775 / 1,4)
 

------------------------------------------------------------------------------------


Wendepunkte von B(x) im Bereich von x1 = -3 bis x2 = 3:

W1 (-0,447 / 1,667)
W2 (0,447 / 1,667)

 

Module zum Themenbereich Analysis


Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Integer-Funktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form -Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integral - Integral - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen


Zur Inhaltsseite