MathProf - Zwei-Punkte-Form einer Gerade - Gerade durch zwei Punkte - 2-Punkte-Form einer Gerade

MathProf - Mathematik-Software - Gerade durch zwei Punkte | Steigung | Abstand | Gleichung
 
MathProf - Mathematik für Schule, Studium und Wissenschaft - Gerade durch zwei Punkte | Steigung | Abstand | Gleichung

MathProf - Geometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D-Animationen und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

Online-Hilfe für das Modul
zur Durchführung interaktiver Untersuchungen
mit Geraden (lineare Funktionen durch 2 Punkte), beschrieben duch
Geradengleichungen
(Funktionsgleichungen) in Zwei-Punkte-Form.

Zudem werden der Schnittpunkt zweier Geraden, der Winkel zwischen zwei Geraden und die Winkelhalbierende von zwei Geraden dieser Art ermittelt und ausgegeben. Auch werden die Schnittpunkte mit den Achsen einer definierten Gerade bestimmt und es erfolgt die Berechnung der Nullstelle, der Steigung sowie des Steigungswinkels und des Achsenabschnitts einer definierten Gerade. Wertetabellen für lineare Funktionen dieser Art lassen sich im Unterprogramm Funktionswertetabellen ausgeben.

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0

 

 Zwei-Punkte-Form einer Gerade - 2-Punkte-Form einer Gerade - Gerade durch 2 Punkte - Zweipunkteform einer Gerade - Geradengleichung in Zwei-Punkte-Form - Eigenschaften von Geraden - Schnittpunkt zweier Geraden berechnen - Winkel zwischen zwei Geraden

 

Mit Hilfe des Unterprogramms [Geometrie] - [Gerade] - Zwei-Punkte-Form können Geraden in Zwei-Punkte-Form untersucht werden.

 

MathProf - Gerade - Zwei-Punkte-Form - Lineare Funktion - Geradengleichung - Schniitwinkel - Winkelhalbierende - Lineare Funktionen - Achsenschnittpunkte - Gerade durch 2 Punkte - Nullstelle - Steigung


Geradengleichungen in der Ebene können u.a. in einer der folgenden Formen definiert werden:

  • Achsenabschnittsform

  • Punkt-Richtungs-Form (Steigungsform)

  • Zwei-Punkte-Form (2-Punkte-Form)

  • Hessesche Normalenform

  • Allgemeine Form

In diesem Modul können Sie Geraden (lineare Funktionen) untersuchen, die in Zwei-Punkte-Form vorliegen. Geraden, die durch die beiden Punkte P1 und P2 verlaufen, können beschrieben werden mit:

Zwei-Punkte-Form - Gleichung  - 1

Das Programm ermittelt hierbei:

  • Steigung der Geraden
  • Achsenabschnitt b der Geraden
  • Gleichung der Geraden in Steigungsform
  • Abstand der Geraden vom Ursprung
  • Nullstelle der Geraden
  • Gleichungen der Winkelhalbierenden zweier Geraden dieser Form
  • Schnittpunkt zweier Geraden dieser Form

Darstellung


Gehen Sie folgendermaßen vor, um Untersuchungen mit Geraden dieser Art durchzuführen:

  1. Möchten Sie die Koordinatenwerte eines Geradenpunkts (z.B. Punkt A oder Punkt B) exakt festlegen, so können Sie die Schaltfläche Punkte auf dem Bedienformular nutzen und die entsprechenden Werte im daraufhin erscheinenden Formular eingeben. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  2. Um die Position eines Geradenpunkts mit der Maus zu verändern, klicken Sie in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste.
     
  3. Sollen gleichzeitig zwei Geraden dieser Art dargestellt und der Schnittpunkt sowie die Winkelhalbierenden dieser ausgegeben werden, so aktivieren Sie die Kontrollkästchen 2 Geraden und die Kontrollkästchen SP sowie WH.
     
  4. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die Schrittweite bzw. die Anzahl zu verwendender Winkelschritte einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.
Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

Bedienformular

 

MathProf - Gerade - Abstand


Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • Punkte beschriften: Beschriftung relevanter Geradenpunkte ein-/ausschalten
  • Koordinaten: Anzeige der Koordinaten relevanter Geradenpunkte ein-/ausschalten
  • Hilfslinien: Darstellung von Hilfslinien ein-/ausschalten

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Achsenabschnittsform einer Geraden

Punkt-Richtungs-Form einer Geraden

Hessesche Normalenform einer Geraden

Allgemeine Form einer Geraden

Gerade - Gerade

Gerade - Gerade - Interaktiv

Gerade - Punkt

Gerade – Punkt - Interaktiv

Geradensteigung

 

Beispiel


Nach Festlegung der Koordinatenwerte zweier Geradenpunkte A (1 / 1) und B (-1 / 3) gibt das Programm folgende Werte für die Eigenschaften der Gerade aus:

Steigung der Geraden: m = -1

Achsenabschnitt: b = -m·x+y = 2

Gleichung der Geraden in Steigungsform: Y = m·x+b = -1·X+2

Abstand der Geraden vom Ursprung: d = 1,414

Nullstelle der Geraden: N (2 / 0)

Schnittpunkt der Geraden mit der Y-Achse: Sy (0 / 2)

 

Werden die Kontrollkäschen 2 Geraden, WH sowie SP aktiviert und werden die Koordinatenwerte der Punkte, durch welche die zweite Gerade verlaufen soll, mit C (8 / 4) und D (3 / -4) festgelegt, so gibt das Programm zusätzlich aus:

 

Für die zweite Gerade, durch die Punkte C und D:

 

Steigung der Geraden: m = 1,6

Achsenabschnitt: b = -m·x+y = -8,8

Gleichung der Geraden in Steigungsform: Y = m·x+b = 1,6·X-8,8

Abstand der Geraden vom Ursprung: d = 4,664

Nullstelle der Geraden: N (5,5 / 0)

Schnittpunkt der Geraden mit der Y-Achse: Sy (0 / 8,8)

 

Für die Gleichungen der Winkelhalbierenden beider Geraden:

 

Winkelhalbierende 1: Y = 0,114·X-2,627

Winkelhalbierende 2: Y = -8,781·X+34,319

 

Der Schnittpunkt beider Geraden wird ermittelt mit: S (4,154 / -2,154)
 

Weitere Screenshots zu diesem Modul

 

 MathProf - Gerade - Zwei-Punkte-Form - Lineare Funktionen - Gleichung - Funktionsgleichung - Funktionsgleichungen - Beispiel - Achsenschnittpunkte - 2-Punkte-Form - Gerade durch 2 Punkte - Nullstelle - Steigung - Geradengleichung
MathProf - Gerade - Zwei-Punkte-Form - Geradengleichung - Geradengleichungen - Steigung - Funktion - Geometrie - Nullstelle - Beispiel - 2-Punkte-Form - Gerade durch 2 Punkte - Steigung - Lineare Funktionen
MathProf - Geraden - Zwei-Punkte-Form - Schnittpunkt - Schnittwinkel - Winkelhalbierende - Zeichnen - Abstand - Punkte - Beispiel - 2-Punkte-Form - Gerade durch 2 Punkte - Nullstelle - Steigung - Geradengleichung - y-Achsenabschnitt - Lineare Funktionen
MathProf - Geraden - Zwei-Punkte-Form - Berechnen - Darstellen - Parallel - Mathematik - Punkte - Winkel - Analysis - Lineare Funktion - Beispiel - Achsenschnittpunkte - 2-Punkte-Form - Gerade durch 2 Punkte - Nullstelle - Steigung - Geradengleichung - Gerade - y-Achsenabschnitt - Lineare Funktionen
MathProf - Gerade - Zwei-Punkte-Form - Berechnen - Darstellen - Gleichung - Steigung - Nullstelle - Winkel - Geradengleichung - Beispiel - Achsenschnittpunkte - 2-Punkte-Form - Gerade durch 2 Punkte - Nullstelle - Lineare Funktionen - Geradengleichung - y-Achsenabschnitt
 

Module zum Themenbereich Geometrie


Achsenabschnittsform einer Geraden - Punkt-Richtungs-Form einer Geraden - Zwei-Punkte-Form einer Geraden - Hessesche Normalenform einer Geraden - Allgemeine Form einer Geraden - Gerade - Gerade - Gerade - Gerade - Interaktiv - Gerade - Punkt - Gerade - Punkt - Interaktiv - Geradensteigung - Kreis - Punkt - Kreis - Punkt - Interaktiv - Kreis - Gerade - Kreis - Gerade - Interaktiv - Kreis - Kreis - Kreis - Kreis - Interaktiv - Kreisausschnitt - Kreissegment - Kreisring - Ellipse - Regelmäßiges Vieleck - Viereck - Allgemeines Viereck – Interaktiv - Satz des Ptolemäus - Satz des Arbelos - Pappus-Kreise - Archimedische Kreise - Hippokrates Möndchen - Varignon-Parallelogramm - Rechteck-Scherung - Soddy-Kreise - Polygone - Bewegungen in der Ebene - Affine Abbildung - Analyse affiner Abbildungen - Inversion einer Geraden am Kreis - Inversion eines Kreises am Kreis - Spirolateralkurven - Spiralen im Vieleck - Granvillesche Kurven - Bérard-Kurven - Eikurven - Kegelschnitt - Prinzip - Pyramidenschnitt - Prinzip - Kegelschnitte in Mittelpunktlage - Kegelschnitte in Mittelpunktlage - Interaktiv - Kegelschnitte in achsparalleler Lage - Kegelschnitte in achsparalleler Lage - Interaktiv - Kegelschnitte in Mittelpunktlage - Punkt - Kegelschnitte in Mittelpunktlage - Gerade - Allgemeine Kegelschnitte - Kegelschnitte durch 5 Punkte - Interaktive Geometrie mit Objekten - Winkelmaße - Strahlensatz - Teilungsverhältnis - Konstruktion einer Mittelsenkrechten - Konvexe Hülle - Dreieck - Pyramide - Quader im Raum (3D) - Krummflächig begrenzte Körper (3D) - Ebenflächig und krummflächig begrenzte Körper (3D) - Platonische Körper (3D) - Archimedische Körper (3D) - Spezielle Polyeder (3D) - Selfbuild - Punkte (3D) - Selfbuild - Strecken (3D)


Zur Inhaltsseite