MathProf - Zahlenfolgen - Zahlenreihe - Nullfolgen - Alternierend

Fachthema: Zahlenfolgen
MathProf - Analysis - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels 2D-Simulationen und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

Online-Hilfe
für das Modul zum Berechnen und Zeichnen von Zahlenfolgen (Zahlenreihen).
In diesem Unterprogramm erfolgt unter anderem, neben der Ausgabe der Partialsumme der Folge (Reihe) und der Auflistung derer Folgenglieder, die Ermittlung derer Konvergenz bzw. Divergenz sowie die grafische Darstellung der Glieder der definierten Folge.
Besitzt die entsprechende Zahlenfolge einen Grenzwert, so ermittelt der Rechner, ob eine mathematische Folge dieser Art streng monoton fallend oder streng monoton steigend verläuft.
Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind eingebunden.

Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.

Themen und Stichworte zu diesem Modul:Zahlenfolgen - Folgen - Folgen und Reihen - Partialsumme - Teilsumme - Entwicklung - Entwickeln - Partialsummen berechnen - Partialsummenfolge - Alternierende Folgen - Alternierende Reihen - Alternierende Zahlenfolge - Bestimmung der Grenzwerte von Folgen - Folgenglieder - Berechnen - Konvergenz einer Folge - Konvergenz von Folgen - Divergenz einer Folge - Epsilon-Umgebung - Nullfolgen - Explizite Darstellung - Explizite Folge - Bildungsvorschrift - Numerische Berechnung von Reihen - Grenzwert - Summenfolge - Untersuchen - Untersuchung - Plotten - Zeichnen - Grafik - Punkte - Tabelle - Rechner - Graph - Werte - Umgebung - Terme - Fortsetzung - Schranken - Eigenschaften - Partialsummenfolge - Bilder - Darstellung - Beispiel - Aufgabe - Berechnung - Darstellen - Bildungsgesetz - Teilfolge - Konvergente Folgen - Divergente Reihen - Divergente Folgen - Zahlenreihen - Grenzwert einer Folge - Grenzwert berechnen - Mathematische Folgen - Konstante Folge - Periodische Folgen - Unendliche Reihen - Konvergente Reihen - Konvergente Zahlenfolgen - Divergente Zahlenfolge - Summenwert einer Reihe - Prüfung der Divergenz von Folgen - Punktfolgen - Natürliche Zahlen - Mathematische Reihen - Glieder - Grafische Darstellung von Zahlenreihen - Explizite Darstellung von Folgen - Obere Schranke - Untere Schranke - Obere und untere Schranke - Harmonische Reihe - Alternierende harmonische Reihe - Teleskopreihe - Allgemeine harmonische Reihe |
Zahlenfolgen
Zur Untersuchung von Zahlenfolgen steht das Unterprogramm [Analysis] - [Zahlenfolgen] - Zahlenfolgen zur Verfügung.
Reelle Zahlenfolgen sind Funktionen, deren Definitionsbereich eine Gesamt- bzw. Teilmenge der natürlichen Zahlen ist. Die Elemente des Wertebereichs heißen Glieder der Folge und sind ebenfalls Zahlen. Zahlenfolgen heißen konvergent, wenn sie einen Grenzwert besitzen, andernfalls sind sie divergent. Eine Zahlenfolge mit dem Grenzwert 0 heißt Nullfolge.
Argumente von Zahlenfolgen werden in diesem Programm durch den Buchstabe K definiert. Es besteht die Möglichkeit eine, oder zwei Folgen dieser Art gemeinsam zu untersuchen. Um Untersuchungen mit Zahlenfolgen dieser Art interaktiv durchzuführen, verwenden Sie das Unterprogramm Zahlenfolgen - Interaktiv.
Berechnung und Darstellung
Sie können die Glieder einer Zahlenfolge errechnen und darstellen lassen indem Sie folgende Vorgehensweise anwenden:
- Definieren Sie die zu analysierende Zahlenfolge a(k) im dafür vorgesehenen Eingabefeld gemäß den geltenden Syntaxregeln und aktivieren Sie das Kontrollkästchen a(k) =.
Möchten Sie eine zweite Zahlenfolge gleichzeitig untersuchen, so definieren Sie den entsprechenden Term im Eingabefeld b(k) gemäß den Syntaxregeln und aktivieren das Kontrollkästchen b(k) =.
- Legen Sie den Bereich, über welchen eine Summierung durchgeführt werden soll, durch die Eingabe entsprechender Zahlenwerte in die Felder mit den Bezeichnungen 1. Glied und Max. Ausgabewert fest. Voreingestellt sind hierbei für den Wert des 1. Gliedes die Zahl 1, sowie für den Wert des letzten Gliedes die Zahl 100.
- Möchten Sie zusätzlich das Ergebnis der Summation von Gliedern über einen bestimmten Wertebereich ermitteln lassen, so aktivieren Sie das Kontrollkästchen mit der Bezeichnung Partialsumme in Bereich von ... und geben die entsprechenden Werte in die dafür vorgesehenen Felder ein.
- Bedienen Sie hierauf die Schaltfläche Berechnen, so wird diese Aufsummierung durchgeführt und die Ergebnisse werden tabellarisch ausgegeben.
Bestimmt wird u.a. auch der Grenzwert einer definierten Zahlenfolge (lim ak bzw. lim bk), sofern diese nicht divergiert, bzw. unbestimmbar ist.
- Nach einem Klick auf die Schaltfläche Darstellen werden die Glieder der Zahlenfolge dargestellt.
- Benutzen Sie hierauf die aufklappbare Box Auswahl, um die Darstellungsart der Folge auszuwählen. Zur Verfügung stehen: Punkte, Punkte und Linien sowie Balken.
Hinweise:
Soll eine Aufsummierung über einen sehr großen Wertebereich hinweg durchgeführt werden, so erhöht sich die hierzu notwendige Berechnungszeit entsprechend. Das Abbrechen einer solchen Berechnung erreichen Sie durch die Bedienung der Taste ESC.
Unter der Voraussetzung, dass eine definierte Zahlenfolge konvergent ist, wird die festgelegte ε-Umgebung (voreingestellt: 0,1) bei Ausgabe der grafischen Darstellung farblich markiert. Das hierbei auf dem Bedienformular vorhandene Kontrollkästchen Umgebung mark. steht jedoch stets zur Verfügung und bleibt ohne Funktion, wenn die dargestellte Zahlenfolge divergent ist.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Bedienformular
Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
- Beschriftung: Beschriftung dargestellter Punkte ein-/ausschalten
- Umgebung mark.: Markierung der ε-Umgebung ein-/ausschalten
Allgemein
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
Weitere Themenbereiche
Rekursive Zahlenfolgen - Interaktiv
Arithmetische und geometrische Zahlenfolgen
Beispiel - Aufgabe
Es gilt untersuchen zu lassen, ob die Zahlenfolge a(k) = k/(k+1) innerhalb der Bereichs 1 ≤ k ≤ 10 einen Grenzwert besitzt.
Vorgehensweise und Lösung:
Geben Sie den Term K/(K+1) in das Feld a(k) = ein, aktivieren Sie das zugehörige Kontrollkästchen. Geben Sie in das Feld 1. Glied den Wert 1, und in das Feld Max. Ausgabewert den Wert 10 ein. Nach einer Bedienung der Schaltfläche Berechnen ermittelt das Programm als Ergebnis für den Grenzwert dieser Zahlenfolge:
Da es zudem erforderlich ist, die Partialsumme der Glieder 5 bis 10 ermitteln zu lassen, aktivieren Sie das Kontrollkästchen Partialsumme in Bereich von ... und geben in die dafür vorgesehenen Felder die entsprechenden Werte ein. Das Programm gibt in diesem Fall nach einer erneuten Bedienung der Taste Berechnen als Ergebnis für die Partialsumme der Glieder 5 bis 10 die Zahl 5,2635 aus.
Für die Werte und Partialsummen einzelner Glieder der Zahlenfolge werden folgende Resultate errechnet und tabellarisch ausgegeben:
Glied | Wert | Partialsumme |
1 | 0,5000 | 0,5000 |
2 | 0,6667 | 1,6667 |
3 | 0,7500 | 1,9167 |
4 | 0,8000 | 2,7167 |
5 | 0,8333 | 3,5500 |
6 | 0,8571 | 4,4071 |
7 | 0,8750 | 5,2821 |
8 | 0,8889 | 6,1710 |
9 | 0,9000 | 7,0710 |
10 | 0,9091 | 7,9801 |
Wird der Wert für die ε-Umgebung auf 0,1 belassen und hierauf die Schaltfläche Darstellen bedient, so gibt das Programm zudem aus, dass das erste Glied der definierten Zahlenfolge, welches sich innerhalb des festgelegten Umgebungsbereichs befindet, das Glied 9 ist und dieses den Wert 0,9 besitzt (1. Glied in Umgebung: 9 (0,9)).
Hinweise:
Eine Teleskopreihe kann beschrieben werden mit: a(k) = 1/(K+1)-1/K
Eine alternierende Reihe kann beschrieben werden mit: a(k) = (-1)^K/K
Eine allgemeine harmonische Reihe kann beschrieben werden mit: a(k) = 1/(K^3)
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Folge sowie unter Wikipedia - Grenzwert zu finden.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Integer-Funktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen